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Abstract. While the use of autograders for code correctness is widespread,
less effort has focused on automating feedback for good programming
style: the tasteful use of language features and idioms to produce code
that is not only correct, but also concise, elegant, and revealing of de-
sign intent. We present a system that can provide real-time actionable
code style feedback to students in large introductory computer science
classes. We demonstrate that in a randomized controlled trial, 70% of
students using our system achieved the best style solution to a coding
problem in less than an hour, while only 13% of students in the con-
trol group achieved the same. Students using our system also showed a
statistically-significant greater improvement in code style than students
in the control group.
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1 Motivation and Overview

Rapid feedback is integral to mastery learning. Prior work has shown that stu-
dents learn best through the process of repeatedly submitting, receiving imme-
diate actionable feedback and resubmitting [1, 9, 13]. Automatic graders (auto-
graders) provide this capability and are thus used extensively in programming
courses, especially Massive Open Online Courses (MOOCs). However, while the
use and development of autograders for code correctness is widespread, less effort
has focused on automating feedback for good programming style [17].

Software with poor code quality has been shown to require significantly higher
maintenance, a sobering fact considering that maintenance dominates software
cost [5]; good coding style therefore has significant implications for the software
industry. By providing students with rapid and actionable style feedback, intel-
ligent tutoring systems can help future software developers develop good coding
style habits early.

Most existing code style tools check code against a fixed set of style rules that
do not depend on the specific code being analyzed. Checkers such as lint(1)

and pylint and existing autograders such as rag [6] are unable to account for
subtleties such as whether using a different data structure, language construct or
library call might be stylistically better, and therefore cannot provide actionable
feedback on how to improve style [6, 11]. As a result, providing actionable style



feedback usually requires instructors to manually read student code, which can
be resource-prohibitive in large courses. Our university’s rigorous introductory
computer science course relies on over 40 teaching assistants to manually grade
over a thousand code submissions per assignment. Given scarce TA resources,
style is lightly graded on a coarse-grained scale based on a “style guide” given to
students. Automating style grading would save significant instructor time and
could provide more tailored feedback to support mastery learning.

Our approach to providing such guidance automatically is to (1) identify
similarities among student code submissions for a short assignment (a few lines
to tens of lines of code), (2) analyze these similarities using clustering techniques
and Abstract Syntax Tree (AST) comparison, and (3) use them to deliver a
combination of instructor-authored guidance and auto-generated syntactic hints,
such that the guidance provided on a given submission is based on properties of
another student’s structurally similar but stylistically superior submission.

Specifically, we make the following contributions:

1. Two techniques for analyzing similarities in student code for short assign-
ments: one based on unsupervised classification and the other based on dif-
ferencing of the ASTs of student submissions.

2. A workflow based on the above techniques that enables instructors to effi-
ciently provide style feedback for a large body of submissions to the same
assignment, with effort proportional to the number of distinct approaches to
solving the problem, not the number of students.

3. An unsupervised, automated, student-facing workflow that provides stu-
dents with a combination of instructor-authored guidance and automatically-
generated guidance based on similar submissions by other students.

4. A randomized controlled trial experiment demonstrating the efficacy of our
system. Students in the treatment group showed a statistically-significantly
greater improvement in style than students in the control group.

2 Related Work

Most work on hint generation has focused on code correctness. Lazar and Bratko [14]
construct hints for Prolog programs in a generative manner based on specific
editing operations that transform the program code. Rivers and Koedinger [19]
propose a method for automatic code correctness feedback by using AST differ-
encing to identify a student’s state in a solution space and showing the student
another student’s slightly-better program as feedback, developing various tech-
niques to reduce the vast solution space and make the hint-generation problem
tractable. In contrast, we assume students start with a correct but possibly ugly
solution, which they may have produced on their own or with the help of such
a system and/or verified against a test-based autograder [6].

Whereas early work on providing automated feedback was based on (often
manually-constructed) “bug libraries,” as large corpora of code have become
available (due the increasing class sizes and the availability of cloud services



such as GitHub), guidance systems have begun generating feedback by compar-
ing student code to an existing corpus. Codex [2] discovers common language
idioms (integral to good style) and detects patterns in the student’s code that
might benefit from applying them. Codewebs [18] tries to identify semantically-
equivalent code blocks in different students’ submissions, to which the same
instructor feedback can be applied. Both approaches use abstract syntax tree
(AST) differencing to compare code exemplars. We use similar techniques to
identify correct student submissions that are similar but have salient stylistic
differences, and use these submissions to generate style feedback.

We also draw upon recent work on using machine learning techniques to
increase instructor leverage. Huang et al. [10] found that clustering ASTs of
student submissions produces clusters that embody similar strategies to solv-
ing the problem and could potentially receive the same feedback. Glassman et
al. [8] hierarchically cluster student submissions, based first on student strategy
and then on implementation. They identify the features required for effective
clustering. We draw upon their work to cluster existing student submissions to
allow instructors to provide predetermined style feedback for students solving
the problem using a particular strategy.

3 Approach

We and others have observed that given a large enough corpus of submissions
to a given programming problem, there exists a range of stylistic mastery, from
näıve to expert [17]. Figure 1 shows three correct submissions from students
with pseudonyms Alice, Bob, and Charlie, who provide three correct solutions
to the same simple problem: given a list of words, return a list of groups such
that all words in each group are anagrams of each other. As the figure shows,
correct solutions vary in length (and therefore complexity) by nearly a factor of
ten. While we could simply show Alice’s solution to Charlie, many conceptual
gaps separate her concise solution from his 30-line solution. In contrast, guiding
students to incrementally improve and discover the best solution has been shown
to be more conducive to mastery learning by reducing cognitive load, especially
for struggling students [20]. Thus, we seek a sequence of hints that will guide
Charlie to incrementally transform his solution to one like Alice’s.

In order to provide style-improvement feedback based on differences between
student submissions, we need a way to measure both style goodness and dif-
ferences. The software engineering literature suggests a variety of metrics of
stylistic quality [12]. We have found empirically that the ABC score, which tal-
lies a weighted count of assignments, branches, and conditional statements in a
block of code [3], is a good proxy for stylistic quality when used on short (a few
lines to a few tens of lines) code fragments. It relies on static analysis only, and
is easy to implement and fast to compute. In general, a lower score is better, but
it is an ordinal metric, i.e. cutting the ABC score by half does not necessarily
imply that the code has doubled in stylistic quality. That said, the choice of
algorithm used to compute the quality score is an input to our workflow, and
any metric that obeys the triangle inequality can be used.



d e f combine anagrams(words) # A l i c e

words . group by{|w| w. chars . downcase . sort }. values
e n d

d e f combine anagrams(words) # C h a r l i e

rtn = Array .new
words . each do |word |

p(word)
wordDowncase = word . downcase
l e t t e r s = wordDowncase . sp l i t (””)
exist = f a l s e

rtn . each do | rtnAry |
r l = rtnAry [ 0 ] . downcase . sp l i t (””)
if ( r l . length==le t t e r s . length ) t h e n

p( r l )
r l . sort !
l e t t e r s . sort !
match = t r u e

i = 0
r l . each do | r l i |

p((( r l i + ” ”) + le t t e r s [ i ] ) )
match=f a l s e if ( r l i != l e t t e r s [ i ] )
i = ( i + 1)

e n d

if (match == t r u e ) t h e n

( rtnAry << word)
exist = t r u e

e n d

e n d

e n d

( rtn << [word ] ) if ( n o t exist )
e n d

r e t u r n rtn
e n d

d e f combine anagrams(words) # B o b

dict = {}
words . each do |word |

l e t t e r s = word . downcase . each char . sort
if dict . has key?( l e t t e r s ) t h e n

dict [ l e t t e r s ] += [word ]
e l s e

dict [ l e t t e r s ] = [word ]
e n d

e n d

r e t u r n dict . values
e n d

Fig. 1: A 3-line correct solution by Alice, 12-line correct
solution by Bob, and 30 line correct solution by Charlie
to the same problem, illustrating the range of stylistic
mastery commonly found in the type of assignments used
in introductory classes.

The edit distance between the abstract syntax trees (ASTs) is a common
measure of similarity between two code fragments [22]. To emphasize the im-
portance of higher-level structure (the “problem solving strategy”), we use the
normalized tree edit distance (n-TED) of the AST, which weights nodes closer
to the root of the AST more heavily, thus preventing minor syntactic differences
at the leaves from affecting the similarity score of programs that are structurally
similar, but differ in low-level details [21].

4 Instructor and Student Workflow

Our workflow starts with a corpus of existing submissions to a programming
problem, which may include an instructor-authored canonical solution. This cor-
pus may consist of submissions from a previous offering of the course, or it can
be bootstrapped using submissions from a subset of the students in a large-
enrollment course. We perform an offline computation to generate the AST and
quality score for every submission, and the pairwise similarity between all pairs
of submissions. The submission(s) with the best style score(s) are judged to be
the best possible style exemplars for this problem. The result of this step is an
undirected weighted complete graph in which each student submission is a vertex
and the tree edit distance between submissions are the weights on the edges.

We then cluster the student submissions to aggregate groups of submissions
that use the same problem-solving strategy. We observed that stylistically-better
solutions tend to be densely clustered, whereas stylistically weak solutions tend
to form sparse clusters (informally, there are many more varied distinct ways
to be stylistically “wrong” but only a few ways to be stylistically “right” for a
short assignment). We therefore use the OPTICS density-based clustering algo-
rithm [21].

The instructor then annotates each cluster with three items. The first is a
label: good, average, or weak. A good cluster has solutions close to or identical to
the best solution. Average clusters contain solutions that solve the problem using
a mundane approach and can thus still improve on both approach and language



idioms. Weak clusters contain solutions that generally exhibit lack of knowledge
of one or more important language concepts or constructs that are essential to
solving the problem with excellent style. There is clearly instructor subjectivity
in applying these labels; to aid the instructor, we display an interactive 2D
visualization, as Fig. 2 shows.

Fig. 2: t-SNE [15] 2D visu-
alization of clustering 425
submissions. Each dot rep-
resents a submission, colors
represent clusters, and hov-
ering over a dot shows the
actual code associated with
that submission.

The second item is an approach hint for the cluster. Approach hints aim to
correct a misunderstanding or lack of awareness of the best way to approach the
problem; they illustrate the high-level reasoning of how to approach the problem
from a new direction while still leaving the work of developing and implementing
a more elegant solution to student. That is, this is the hint that the instructor
would give a student whose submission was similar to the cluster members.

The third item is an exemplar the instructor chooses from another cluster
that she believes to represent a better approach. In keeping with our philoso-
phy of incremental improvement, we ask the instructor not to simply select an
exemplar from the “best” cluster as part of the approach hints.

In addition to the instructor-authored annotations on each cluster, our sys-
tem automatically produces two other types of guidance. Code Skeletons are
redacted versions of other students’ solutions that demonstrate the key control
flows and structure of a possible solution, while obfuscating variable names and
function call names. Syntactic hints guide the student to add (remove) specific
structures (loops, conditionals, special language constructs, calls to common
built-in or library functions) in order to improve style, based on the presence
(absence) of those features in submissions with better style. Syntactic hints are
derived by chain-building [17], a process that traverses the complete graph gener-
ated in the preparation step to find a path from a given submission to one of the
“best possible” submissions. The path is subject to the constraints that for each
edge A→ B, the n-TED structural difference between A and B does not exceed
a set threshold, and B’s style score is better than A’s by a set threshold. The
path is analyzed to determine the most important syntactic hints corresponding
to structural features present (absent) in later links in the chain. The feature
vectors used in this analysis check for specific language features such as built-in
functions, language idioms, and basic control flow constructs in each language;
we have constructed feature vectors for Ruby, Java, and Python.



Fig. 3: Example of a chain and the
hints generated for such a chain.

5 Experiment Design and Setup

We performed an intervention experiment using n = 80 compensated student
participants and compensated teaching assistant participants to evaluate the
efficacy of our system under realistic conditions. 1 All recruited participants were
associated with our university’s large-enrollment introductory computer science
course, which introduces a range of programming concepts using the Python
language. Participants were recruited by advertising in the course discussion
forum and were paid US$15 for one hour of their time.

The primary hypothesis is as follows: Compared with students who are given
only a set of “good style” guidelines, students receiving hints via our automated
workflow will improve their code quality more in a given period of time.

We had a corpus of 265 student submissions of this assignment from a pre-
vious offering of the course. Prior to working with the study participants, we
ran our clustering algorithm on this corpus and labeled each generated cluster
as good, average, or weak; we annotated average and weak clusters with ap-
proach hints, and picked exemplars for the weak clusters. To help validate that
the clusters do indeed capture common approaches, we recruited two TAs from
the same course and asked each to write down in their own words a description of
the overall approach represented by each cluster’s members, and two additional
TAs to judge whether the descriptions provided by the first two TAs were similar
on a five-point scale. We report a square weighted Cohen’s kappa of 0.71 and an
average similarity rating of 3.85 (σ=0.91). These statistics indicate that different
instructors are able to recognize the approaches captured by the clusters.

The recruited students were randomly placed into either the treatment group
(50 students) or control group (30 students). Both groups were given the same
Python programming assignment, based on a previous offering of the course but
absent from the current offering. All participants were provided with the “style
guide” authored by the course staff and were allowed access to the Internet to
look up documentation. All participants were shown the same problem and in-

1 IRB Protocol number: 2015-10-8003



structed to submit a solution; participants were allowed as much time as they
wanted (within the one-hour time limit of the experiment) to do so. Upon sub-
mission, participant solutions were automatically evaluated against a set of test
cases for correctness. Upon submitting a correct solution, the participant was
immediately shown the computed “style score” for their solution as well as the
best possible style score for this problem (2.41 based on the corpus of previous
submissions—recall that lower ABC scores are better), and asked to revise their
submission to work towards the best score. The control group was given only
the style guide (reflecting current practice in the course), whereas the treatment
group received specific automatically-generated feedback from our system.

In particular, each submission from a treatment-group student was first an-
alyzed using k-nearest neighbors to determine which cluster it would belong to.
If it belonged to a good cluster, the participant was shown only a syntactic
hint based on building a chain from his submission to the best submission. If
it belonged to an average cluster, the participant was shown the instructor’s
approach hint for that cluster, and a syntactic hint. If it belonged to a weak clus-
ter, the participant was shown the instructor’s approach hint for that cluster,
and the code skeleton of the instructor-chosen exemplar for that cluster. Code
skeletons are automatically constructed using a regular expression that redacts
variables and function call names while retaining control flow structures.

All participants were asked to repeatedly revise their solution based on feed-
back until they achieved the best possible quality score or exceeded one hour.

6 Results

We collected every correct submission made during the experiment for both
groups. Figure 4 shows each student’s submission history and the type of feed-
back they received. There was no significant difference in the style score of the
initial submission between the two groups (p = 0.21, Pearson’s χ2 test). How-
ever, students in the treatment group ended with significantly better style scores
(p = 0.007, Kruskal-Wallis H test), indicated in the graph by the treatment
group vertical lines ending much lower than the control group ones (lower style
scores are better with the ABC metric we used).

Figures 4 and 5 show that the percentage of students that achieved the best
style solution (style score of 2.41) is considerably greater in the treatment group
than in the control group. Moreover, as shown in Fig. 5, students in the treatment
group improved significantly more than those in the control group over the one
hour experiment period. They also showed significantly more improvement per
submission attempt than control group.

To evaluate the effectiveness of the different types of guidance, we asked
students to rate the helpfulness of different types of hints on a scale of 1 (not at
all helpful) to 4 (very helpful) immediately after completing the study. We find
that when students were given different types of hints, neither type of hint was
perceived to be significantly more helpful than the others. Specifically, students
reported a mean perceived helpfulness of 3.13 ± 0.79 for syntactic hints (S),
2.77 ± 0.89 for approach hints (A), and 2.85 ± 0.82 for code skeletons (C). We



Fig. 4: Each vertical line
represents a student and
each dot along the line
is a submission. The
color of line segments
between dots for the
treatment group codifies
the combination of hints
the student received—
blue: approach +
code skeleton, yellow:
approach + syntactic,
green: syntactic only.

Metric Treatment Control Statistically significant?

% of students achieving best solution 70% 13% Yes (p < 0.001)†

Mean improvement in style score 7.1± 4.9 4.1± 3.1 Yes (p = 0.007)‡

Mean improvement per attempt 1.8± 3.12 0.62± 1.9 Yes (p < 0.001)‡

Fig. 5: Key results. †Fisher’s exact test ‡Kruskal-Wallis H test

also studied the ratings distribution for the subset of students who received some
combination of hints (A + S or A + C); at a 5% significance level (t-test), we
found no evidence of significant difference between the perceived helpfulness of
different types of hints in either group (p = 0.092 for A+S, p = 0.760 for A+C).

7 Discussion, Limitations, Assumptions

While we are encouraged by the positive results, we note some caveats and
assumptions. First, our chosen metric of style (ABC score) favors a particu-
lar definition of style consistent with our own opinions as instructors; different
metrics may better suit the needs of other pedagogy. Second, we rely on the
instructor to write a good approach hint for a cluster. Third, we assume that
the best style solution is represented somewhere in the initial corpus, though
this is easily ensured by including the instructor’s reference solution. Fourth,
although we have tested the clustering and chain-building on other languages
and assignments with good results, the current experiments were conducted on a
single assignment in one language. Finally, while student feedback on the types
of hints suggests that no hint type’s usefulness dominates the others, we plan to
try to isolate the effects of each in future experiments.

A clear limitation of the current system is its ability to examine only a
single function at a time. A standard style guideline is to improve a function by
refactoring it to use “helper” functions, but our system cannot currently handle
such assignments. We would need to enhance our n-TED similarity metric to
account for such submissions.

Our system deliberately provides guidance consistent with two observations
about how professional programmers learn. The first is the importance of con-
crete rather than abstract advice for improving coding style. The “style guide”



provided to students in the course we worked with can be seen as a microcosm of
the well-developed paradigms in software engineering for improving code read-
ability and maintainability, including refactoring and applying design patterns.
Yet the canonical reference books on those topics [7, 4] feature an abundance of
concrete examples to illustrate the abstract points. We speculate that like the
professional programmers who are the target audience of such books, students
learn better when a hint or technique is situated in a concrete example, as our
hints and code skeletons try to do, rather than stated as an abstract principle.

Second, programming requires active independent learning. Following good
design principles requires knowledge of language features or library functions
of which students may be unaware. Both syntactic auto-generated hints and
instructor-authored approach hints can point students in the right direction by
suggesting, for example, “Consider using a call to set()”. Even if a code skeleton
is provided with the hint, the skeleton is sufficiently redacted that the student
cannot simply copy and paste the code without modification. To improve their
code, the student has no choice but to go off and learn about the language feature
or library function suggested by the hint or code skeleton, possibly seeking the
help of peers or instructors in doing so.

Our system allows instructors and students to enjoy these benefits with a
level of instructor effort proportional to the number of clusters, not the number
of students. Our system currently focuses on giving feedback for one function
or method at a time; since good functions should be short [16], there are only a
finite number of strategies that might be used for a function, so we expect the
number of clusters to grow very slowly with the number of students. Figure 6
shows that this is indeed the case for seven such assignments we studied.

Class size (number of students) 265 425 448 686 951 986 1607

Number of Clusters 8 3 5 5 3 6 4

Fig. 6: Class size vs. number of clusters for seven comparable assignments.

8 Future Work

We plan to field-test this system in one or more large-enrollment campus courses
as well as free Massive Open Online Courses (MOOCs) that teach programming
skills. A key question is whether we can observe transfer of improved code style
skills after students interact with our system; MOOCs would be an excellent
testbed for a randomized controlled experiment to measure transfer.

We have not focused on the relatively well-explored area of generating hints
for program correctness, in part because we have observed as instructors that
students will first work toward a correct program “by any means necessary”
(including with the support of automated hints from an intelligent tutoring sys-
tem), and only later think about refactoring and improving its style (if they think
about these things at all). Indeed, this process is reflected in the “red–green–
refactor” cycle [5] espoused by the Test-First Development approach within the
Agile methodology: programmers are advised to start with nonworking code that
fails a correctness test (red), debug it until it passes the correctness test (green),
then refactor the code and design to improve readability and maintainability.
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