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Abstract—Novices’ functionally-correct code is often redun-
dant, verbose, or un-idiomatic. Such code could indicate shallow
understanding of the programming language, or unfamiliarity
with experts’ preferences for code structure. Understanding why
novices write poorly is important for designing instruction and
tools to help novices write elegantly. 231 novices judged style and
readability for sets of code snippets targeting seven topics. Within
each set, functionality was the same, but the writing followed
either common novice patterns or a more elegant, “expert”
pattern. Overall, 76% of novices thought the “expert” snippets
had the best style, but only 64% said those snippets were most
readable. However, comprehension was similar for both “expert”
and novice patterns, regardless of readability preferences. This
suggests that students who prefer novice patterns do not nec-
essarily have deep misunderstandings about the programming
language. One topic included a code-writing task, and students’
readability preferences were predictive of their code-writing
patterns, suggesting that readability preferences reflect writing
choices rather than comprehension. Thus, novices may benefit
from lightweight tools that identify common patterns and suggest
an “expert” solution, while helping them see that the “expert”
solution is more readable than they think.

Index Terms—computer science education, code readability,
novice code comprehension

I. INTRODUCTION: TEACHING ELEGANT CODING

Code must not only be functionally correct, but also read-

able to other humans. Readability is crucial in professional

settings: the dominant cost incurred during the lifecycle of

a long-lived software system is not bug fixing, but rather

maintenance and enhancement of legacy code [7]. Further, in a

case study, [13] found that when writing new code that would

interact with existing code, 10% of the time was spent on

writing and 90% on reading. Ideally, code should be elegant:
it should be readable, concise, and use language constructs

and control flows that are suited to the problem [3], [5].

For style issues like proper indentation and informative

variable names, experts and novices may agree that improving

style also improves readability [15]. However, novices and

experts may disagree on the readability of control flows and

built-in language features. If a novice is not fluent with these

language features, the novice may not agree that incorporat-

ing them improves the code’s readability. Determining how

novices think about style and readability is crucial for teaching

programming effectively and for designing tools to support

novice programmers. If well-styled code does not improve

readability for novices, instruction to encourage good style

(e.g., [28]) may inadvertently lead to code that is less readable

for the code’s author. While students may write code with

good style for a class, in the long term, students are unlikely

to continue using good style if doing so makes their own code

less readable to them. Programming style includes many facets

(e.g., typographical conventions, variable names, efficiency).

We focus on code structure and control flow, and our use of

the word style in this paper refers to those facets.

For experts, readability is an important factor in determining

if code has good style. However, novices may differ from

experts in what they find easy to read and understand. Students

are also likely to spend much less time than experts on reading,

modifying, or extending existing code. Thus, the importance

of good style for readability and maintenance may be less

apparent to students. If novices do not understand the benefits

of good style, and if good style makes it harder for them

to read the code, then style is likely to seem opaque and

arbitrary. Designs for instruction and tools to support students

in writing well-styled code will depend on whether they find

well-styled code to be more readable than poorly-styled code.

If students understand well-styled code and find it readable,

detecting errors and suggesting solutions may be sufficient.

If not, students may need to be taught how the well-styled

code works. Therefore, this paper investigates, empirically,

how well novices’ perceptions of style and readability match

those of experts, and how novices perceptions of readability

match actual code comprehension.

II. PRIOR WORK: METRICS, TOOLS, ASSUMPTIONS

Experts expect code to follow certain conventions, and

deviating from that expected style can reduce readability for

them [23]. For experts, there are several metrics for code

readability and tools to assist in improving code structure.

However, in drawing conclusions from the literature, we face

three challenges: first, even among experts there is variability

in the accuracy of readability metrics; second, tools to support

experts in structural improvements support refactoring rather

than the lower-level errors typical of novices; and third, the

difference between how experts and novices read and perceive

code likely influences their opinions of readability, so tools to

promote readability for experts may not help novices.

With respect to the first challenge, various metrics exist

for measuring readability, including LOC counting (lines-of-

code), cyclomatic complexity [14], and Assignment–Branch–

Condition (ABC) score [6]. However, empirical studies of

experts suggest that code readability may be influenced by
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neighboring code [10], and that (for example) not all instances

of a construct (e.g. a branch) affect readability equally [1].

Accordingly, researchers are examining additional contextual

features to develop more precise readability metrics [22].

Addressing the second challenge, refactoring, a process

during which code is modified to improve its structure without

changing its behavior, is closely tied to good code style. One

type of refactoring involves identifying and remediating code
smells—(anti-)patterns in source code that create unnecessary

complexity and make code more difficult to comprehend

and/or modify [9], [16]. Automatic detection of such smells

[17], [19], [24] comes closer to our goal, but smells often

occur only in considerably more complex code than novices

are called upon to produce. Further, tools that aid in refactoring

and in detecting code smells focus on pointing out problems

that an expert might otherwise miss because the problem

stretches across several different areas of code [17], [19], [24].

Poor style within a single function may be assumed to be

purposeful, and therefore, not something that the author would

want to change. One tool focuses on lower-level problems that

occur within a single function: inadvertent duplication of code

fragments [25]. However, the tool is specifically designed to

avoid flagging a typical novice error: repeating code inside an

if and its corresponding else. Even in cases where the entire

body of the if and else were identical, the tool does not

flag this as an error, under the assumption that this structure

was purposefully written by the programmer to match their

mental model of the program’s execution [25].

The third challenge in drawing conclusions about novices

from literature about experts is that, like in other domains,

novices and experts perceive and process code differently.

Experts recognize larger perceptual chunks than novices when

reading code, and they focus more readily on the code’s

overall purpose [11]. Since novices have difficulty perceiving

and understanding large code chunks, they may rely more

heavily on line-level details to comprehend code, and may be

more distracted by low-level differences [27]. Thus, empirical

studies with novice programmers are necessary.

The existing literature on explicitly teaching better coding

style to novices is sparse, as is the repertoire of systems

designed to give actionable feedback to students on code struc-

ture. Some tools provide checks on “coding style” narrowly

defined in terms of following typographical standards (e.g.

placement of semicolons and braces) [4], [12], [21], and many

tools, such as Eclipse, will auto-format code according to de-

fined standards. However, typographical standards do not ad-

dress code structure and use of built-in functions (i.e. idioms).

FrenchPress begins to address some of novices’ common, non-

typographical errors, such as incorrectly using the modifier

public in Object-Oriented coding, or comparing a boolean

to true [2]. FrenchPress detects these problems and offers

clear, simple solutions, such as to declare certain variables or

methods as private, or to replace condition == true
with condition [2]. Submitty [20] offers the potential

for checking a much larger and more complex range of

errors, but must be programmed by the instructor (e.g., in a

few lines of code, an instructor could check if submissions

contain the correct number of if statements or nested for
loops). Feedback messages from Submitty are written by

the instructor, and could include hints and suggestions, or

simply alert the student to the error. An Eclipse plugin, PMD

[8], alerts programmers to style issues including collapsible

if-statements and dead code. AutoStyle [28] automatically

analyzes a pre-existing corpus of submissions for a particular

assignment and suggests that students use or not use particular

idioms so that their assignments can become more similar

to the best solutions. However, we have not found studies

examining students’ perspectives on code readability for code

that follows or does not follow style suggestions. Since we

don’t know if implementing these style suggestions makes the

code feel more or less readable to novices, we don’t know

if these systems provide the optimal support for long-term

change in students’ coding.

Empirically determining the impact of novice code patterns

on novice readability is important, especially in light of the hy-

pothesis that novices produces poorly-structured code because

they do not fully understand the task the program is intended

to accomplish or the language features best matched to that

task [26]. This hypothesis is echoed in tools, such as Style

Avatar, which is explicitly restricted to typographical issues

because of the assumption that novices who made idiomatic

or structural errors would not have the knowledge needed

to fix them [12]. Therefore, our studies examine empirically

the relationship between novice and expert code structures on

readability for novices. Understanding these relationships will

support the design of tools to help novices write elegant code.

III. RESEARCH QUESTIONS: READABILITY, STYLE, AND

COMPREHENSION

Tools intended to help novices improve their coding embody

pedagogical perspectives on what novices are capable of

understanding. This study aims to collect empirical evidence

for how novices think about readability and style, as these con-

cepts pertain to common novice coding patterns. Specifically,

our three research questions are:

RQ1. Do novice programmers find common novice patterns to

be more readable than expert patterns?

RQ2. Do novice programmers believe that what is most read-

able to them also matches experts’ style preferences?

RQ3. Do novice programmers’ stated preferences for readabil-

ity match their actual code comprehension?

Here, readability is a self-reported opinion, while compre-
hension is objective, based on finding the output for a code

sample with a given input. To investigate these questions

we ran a pilot study and a follow-up assessment study with

undergraduate computer science students. Both studies used

surveys to present code with the same functionality but written

with different structures or idioms. Both studies showed all

styles of code to all participants, and were analyzed using

within-subject measures.
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Fig. 1. Sample readability/style question on list comprehensions in Python.
Questions included the note that all code samples did the same thing, followed
by the Style or Readability prompt. The Style prompt was: “How would a
programming expert rank them from best to worst for style? Style is the
tasteful use of language that makes code elegant, efficient, and revealing of
design intent.” The Readability prompt was: “Rank them from best to worst
for readability: how easy it is for YOU to figure out what the code does?”

IV. PILOT STUDY: BUILT-IN LANGUAGE FEATURES

We administered a self-paced, respond-anytime, online sur-

vey to 27 undergraduate computer science students at In-

stitution C. 37% of these students (10/27) had previously

completed a rigorous introductory Python programming course

on which the survey questions were based, and an additional

59% (16/27) were enrolled in that course during the study.

The survey asked students to self-report their familiarity

with specific idioms (list comprehensions and sets) in the

Python language. It then presented short code examples (5–15

lines) designed to solve problems similar to those encountered

in the course assignments. In the code comprehension ques-

tions, students were shown functional code and were asked

what the output would be, given some input. In the style and
readability questions, students were shown four code blocks

with the same functionality, and were asked to rank them first

in order of style and then in order of readability (see figure 1

for prompts).

A domain expert (an instructor at Institution C) had previ-

ously classified each correct implementation as Optimal (most-

stylistic solution), Naı̈ve (avoids stylistically-appropriate id-

ioms in favor of longer code using only primitive language fea-

tures), Suboptimal (includes appropriate idiom(s) but misuses
them in a way that makes the solution needlessly complex),

or Helper Function (structurally identical to either the Optimal

or Suboptimal solution, but references a helper function that

duplicates the functionality of the built-in language feature an

expert would have used). Each target idiom had one set of

code blocks for the style/readability ranking, and one or two

comprehension questions with code implemented in both the

Optimal and Naı̈ve styles. Key findings included:

1. For each readability question, a large minority of stu-

dents (40%) did not find the Optimal code to be the

most readable. Across both questions together, only 11

students (41%) ranked both Optimal solutions as most

readable. If we assume that our domain expert’s choices

of “most readable” are representative of other Python

experts, this finding suggests that most students do not

consistently find “expert style” to be the most readable

implementation of a piece of code.

2. Students were more likely to be correct on comprehension

questions for Naı̈ve code compared to Optimal code (on

average, 89% and 66%, respectively). Even students who

ranked the Optimal solutions as most readable were more

accurate with Naı̈ve code compared to Optimal code.

These findings suggest that novices may prefer to read non-

expert code, and that expert code may reduce their compre-

hension. Even novices who claim to prefer expert language

features may be overestimating their own understanding. These

results suggest that tools for supporting elegant code among

novices may first need to teach novices what that code does.

Yet, a majority of novices did understand the expert code,

suggesting that they possess sufficient comprehension skills

to be receptive to instruction on advanced idioms.

Results from the pilot were not conclusive because of

several threats to validity (beyond the small sample size, likely

a result of running the study near final exams). We only had

one expert’s opinions on which code exhibited best style.

Also, the target idioms were not emphasized equally across

the course sessions from which we had recruited participants,

so all participants may not have had the same level of exposure

to them. This was evidenced by some students indicating

that they did not have experience using the target idioms.

Further, while comprehension and style/readability questions

were matched by topic, the topics were likely too broad. For

example, the style/readability questions for set included the

data structure but no built-in functions; some comprehension

questions included a particular syntax for a built-in set func-

tion that many students found confusing (& for intersection).

Finally, the pilot targeted specific Python idioms that may not

be relevant to other languages. The follow-up study continues

to examine the relationship between style, readability, and

comprehension, with a study design that responds to these

threats.

V. STUDY: NOVICE VS. EXPERT PATTERNS

This follow-up study was designed to further explore the

readability of expert code for novice programmers. This

follow-up study was also designed to address shortcomings in

the pilot. In contrast to the pilot which examined particular

idioms that novices may not be familiar with, this study

examined coding patterns with foundational elements such as

returns, if-statements, and loops, which all participants were

expected to understand. Additionally, we worked closely with

the course instructor to examine novice patterns thought to be

prevalent and important, and we verified which code blocks

exhibited the best style with five other CS instructors. Finally,

by running the study earlier in the semester, we recruited more

students, ending up with data from 231 participants in our

analyses.

Based on the preliminary results from the pilot, we

pre-registered our hypotheses and analysis plan with

the Open Science Framework (https://osf.io/b53zv/register/

564d31db8c5e4a7c9694b2be). We hypothesized that:
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H1. Prevalence: At least 20% of the population of students

will: choose non-expert code as most readable (for all

topics); choose at least 2 non-expert code blocks as most

readable (across all topics); and use a novice pattern on

the code-writing task.

H2. Style vs. Readability: For each topic, students will be

more likely to choose the expert code as being the best

styled rather than being the most readable.

H3. Comprehension: Overall, students will be more accurate

at comprehension questions for code written with novice

patterns. Within each topic, this effect will be more

pronounced for students who selected the novice code

as most readable.

A. Assessment Design

We identified topics to investigate by examining final home-

work submissions from past students in their second program-

ming intensive course. We chose second courses because we

wanted to examine patterns that persisted beyond students’

first encounters with the target concepts. One of the authors

teaches a second programming class in Java at Institution

A, and randomly selected 20 submissions from the past four

offerings of the course (from a total of 81 submissions; each

submission was completed by 1-2 students). Hand-inspection

revealed eight sub-optimal patterns in those 20 submissions.

Another author examined submissions from the previous year’s

second programming class at Institution B (also taught in

Java). All 316 submissions from that assignment (completed

individually) were searched for the presence of while loops

since for loops were most appropriate for those tasks. Since

the assignment at Institution B targeted loops while the assign-

ment at Institution A did not, this search revealed an additional

novice pattern. Hand-inspection of several assignments at In-

stitution B revealed that many patterns identified at Institution

A were also present at Institution B. The current instructor of

the second- and third-semester courses at Institution B (from

which we recruited participants) reviewed the patterns and

ordered them by importance for his courses. The instructor

verified that for these courses, there were no other topics which

he thought were more important for writing well-structured

code within a single function.

An undergraduate student teaching assistant completed a

draft version of the survey to check that the instructions made

sense and to see how long the survey might take our target

students to finish. The student indicated that the instructions

were clear, but some questions with long code examples

were time-consuming to answer. The draft survey took longer

than our target time of 1 hour, so we simplified the longer

code examples and eliminated two novice patterns from the

final survey: explicitly checking within an if statement if

something is true, and unnecessarily assigning a value to an

intermediate variable instead of assigning the value directly to

the ultimate target variable. The final seven topics in our study

had these novice patterns:

1. For exclusive cases, writing a series of if statements

rather than using else if.

2. Conjoining conditions using nested if statements rather

than the && operator.

3. Repeating code inside an if block and its corresponding

else block.

4. Including extraneous cases, with a general solution that

covers those special cases.

5. Returning a boolean value by checking a condition with

an operator (e.g., ==, >, <) by using an if statement

and explicitly returning true or false rather than

simply returning the condition.

6. The previous pattern for conditions with method calls

instead of operators.

7. Using a while loop when a for loop is more appro-

priate.

The first four were identified by the course instructor as the

most important of the original set.
1) Prevalence of Target Patterns in Students’ Code: Several

patterns were identified in prior years’ homework submissions

with automated checks using regular expressions. Comments

were either removed before the checking was done, or results

were hand-inspected to ensure that matches within comments

were not included in the final count.
Automated checking for the boolean return patterns found

them in 75% (61/81) of the submissions from Institution A

and 13% (42/316) of the submissions from Institution B. The

automated check searched for returning true or false if

the condition was true, and returning the opposite value if

the condition was false. The patterns optionally allowed for

brackets enclosing the body of the if and/or else; and

optionally allowed for an explicit else statement. Automated

checking for while loops found them in 5% (17/316) of

the submissions from Institution B, which targeted iterating

through arrays (the assignment from Institution A did not

target loops). Though using while instead of for was not

widespread, for some students it appeared to be pernicious:

of the students who used while loops, 4 students used

them exclusively. The remaining 13 also used for loops

(sometimes nested in combination with while). Using nested

if statements rather than && was found in 5% (4/81) of

the submissions from Institution A, and 3% (9/316) from B.

Nested if statements were identified with regular expressions,

and then hand-inspected to verify that using && would have

been appropriate.
The remaining patterns were identified by hand inspection

of the original 20 randomly-selected submissions from Insti-

tution A (completed by 1-2 students), and of 30 randomly-

selected submissions from Institution B (completed individ-

ually). The Extraneous Cases pattern was found in 7/20

submissions from Institution A and 1/30 from B. Repeated if
Statements for Exclusive Cases was found in 4/20 assignments

at Institution A, and 0/30 at B. Repeating Code Within an if
and its else occurred in 11/20 submissions at Institution A

and 10/30 at B.
Overall, these issues as a set were prevalent in student code.

Of the 20 random assignments from Institution A (where the

patterns were first identified), 19 contained at least one of
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the first six novice patterns, as did 13 of the 30 random

assignments from Institution B. The specific tasks in the

different assignments account for some of the differences

in errors and error rates. Our goal in this analysis is not

to estimate the overall rates of these errors among novices,

but simply to demonstrate that evidence suggests they are

prevalent enough to warrant examination.

2) Instruction on the Target Patterns: The instructor for the

first-semester programming course at Institution B (also taught

in Java) verified that students would have received instruction

on the expert patters for six of the seven topics on the

survey. One assignment in that first-semester course explicitly

targets returning boolean values, and requires students to do

so without using if statements. Other patterns are addressed

in live code demonstrates during lectures. Students are also

explicitly told to use for loops rather than while loops when

iterating through arrays; to avoid duplicating code (which

pertains to repeating code within an if and its else); and

to use conjunctions rather than nested if statements. The one

pattern that is not addressed in that course is Extraneous Cases.

The instructor for the second-semester programming course

at Institution B noted that no assignments or lectures in that

course specifically target these patterns. Students would lose

points on assignments for duplicate code, which somewhat

addresses patterns 3 and 5. Teaching Assistants may also

deduct points for the other patterns under a rubric category

“general code quality,” but the instructor also noted that this

category is used subjectively, and that it is too time-consuming

to hand-inspect code for all novice patterns. Therefore, while

students may be penalized for using these patterns in their

second semester and beyond, the high cost of identifying these

patterns prevents consistent detection and feedback.

3) Survey Introduction and Code Writing: All code on

the survey was in Java, the language taught in the first

two programming courses at Institution B. The survey first

presented a short list of instructions (e.g, to complete the

survey individually without outside resources, to note that

answers could not be changed after moving on to the next

question). Then the survey presented the consent document

and asked participants if they wished to participate in the

research. Next, the survey included one code writing task,

with the prompt “Fill in the function so that it returns true

if the input is 7, and false otherwise (the first line and last

line are provided for you).” The first line of the function was

“public boolean func(int num){”, and the last line

was the closing bracket.

4) Readability and Style Questions: Next, the survey pre-

sented one pair of readability and style questions for each

topic. These questions showed three code samples with the

same functionality (see figures 2 and 3). One code sample

demonstrated a common novice pattern, and another demon-

strated a more expert pattern. The third code sample either

presented another version of the novice pattern (for the Re-
turning Booleans topics, figure 2, and for Repeating Code
within an if and its else), another version of the expert

pattern (for Extraneous Cases, figure 3, and for A Series of

if statements for Exclusive Cases), or a mix of the novice and

expert patterns (with nested loops for for vs. while Loops,

and for Conjoining Conditions with Nested if Statements).

For all readability and style questions, the readability question

was presented first, and then the style question. Readability

questions asked what was most readable for the student, and

style questions asked which they thought an expert would pick

as having the best style (see figure 2 for prompts). The style

questions additionally gave students the option to select that

an expert would say all the code samples had equal style.

5) Comprehension Questions: After the readability/style

questions, the survey presented 14 comprehension questions

(two per topic), one with code written with the common

novice pattern, and one with matched code written with a

more expert structure. Each comprehension question asked

what the output of the code would be for two or three

different inputs, with the code sample shown after the specific

questions. To have the same level of difficulty between the

matched questions while also encouraging students to read

both code samples, matched questions either varied the inputs

while keeping the functionality of the code the same (2 topics,

see figure 6), or kept the inputs the same while slightly

changing the functionality of the code (2 topics, e.g., checking

if the last character in a string is ‘e’ or ‘a’), or did both (3

topics, see figures 4 and 5). All comprehension questions were

multiple-choice, and all included the options “the code will not

compile” and “the code will throw a runtime exception.”

All code samples on the survey which demonstrated novice

patterns were closely based on real novice code submitted as

homework at either Institution A or B. All code samples were

between 3 and 18 lines. Within each topic, variable names

and typographic conventions (e.g., whitespace and placement

of brackets) was kept consistent. Novice and Expert patterns

on the comprehension questions were tightly matched to those

on the readability/style questions.

Fig. 2. Sample readability/style question: returning a boolean value with an
operator (==). The Readability prompt was: “All of these code samples do the
same thing. Which one is most readable to you: which one makes it easiest
for YOU to figure out what the code does?” The Style question immediately
followed the Readability question, with this prompt: “These are the same code
samples as the previous question. All of these code samples do the same thing.
Which one would an expert say has the best style? Style is the tasteful
use of language that makes code elegant, efficient, and revealing of design
intent.” The Style questions all had one additional option, “An expert would
say they all have equal style”.
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Fig. 3. Sample readability/style question: splitting a task into special cases
while also including a general solution.

Fig. 4. Expert code for two comprehension questions on returning boolean
values with operators. Prompts asked “For the code below, what will be the
output for this input:” with inputs 28, 81, and 4, 60. Options for each question
were: true, false, the code will not compile, the code will throw a runtime
exception.

6) Question Order: Within the readability/style section,

topics were ordered so that the boolean return questions would

be first and last, with the other topics ordered randomly

between them. The survey was set up so that half of the

participants would be randomly assigned to see the topics of

the readability/style questions in one order, and the other half

would see them in the reverse order. For the comprehension

section, questions were ordered randomly, but blocked such

that each topic would appear once within the first seven

questions, and once within the last seven questions. The survey

was set up so that half of the participants would be randomly

assigned to see the comprehension questions in one order, and

the other half would see them in the reverse order. The random

assignment to question order was independent for each section.

Random assignment for question order was done to mitigate

ordering effects, especially if seeing one version of code in the

comprehension section made it easier for students to answer

the matched question later on.

7) Five CS Instructors’ Review of Questions: The course

instructor reviewed the survey questions and confirmed that

the proposed “more expert” code samples were preferable

to the ones demonstrating the novice patterns. Five other

Fig. 5. Novice code for two comprehension questions on returning boolean
values with operators. Prompts asked “For the code below, what will be the
output for this input:” with inputs 19, 74, and 12, 8. Options for each question
were: true, false, the code will not compile, the code will throw a runtime
exception.

Fig. 6. Novice code for three comprehension questions: this code splits out
two special cases with the if statements, but these special cases are already
covered by the general solution at the end. Prompts asked “For the code below,
what will be the output for this input:” with inputs [],16 and [4], 16 and [1, 2,
8], 16. Options for each question were: true, false, the code will not compile,
the code will throw a runtime exception. The expert version of this code was
the same, except the two leading if blocks were not included. Inputs for the
expert version were [], 36 and [6], 36 and [3, 12, 19], 36.

instructors who taught programming-intensive courses (two

from Institution A and three from Institution B) also reviewed

the code samples. The instructors saw a modified version of

the survey that included the same style questions that were

on the regular survey, but not the code writing, readability,

or comprehension questions. The instructors also saw seven

additional style questions asking them to compare the style of

the matched code samples from the comprehension questions.

In total, the five instructors saw 14 questions, two for each

topic, which asked them to select the best-styled code from

sets of two or three code blocks which had the same or similar

functionality. The instructors could also say that the code

blocks had equal style. For four topics, all five instructors were

unanimous in their choices for which code block exhibited the

best style.

For Extraneous Cases, instructors were unanimous in se-
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lecting code samples that only included the general solution.

However, for the readability/style question, the instructors

were split between two of the three code samples which both

followed this expert pattern (the top and bottom code samples

in figure 3). Therefore, we consider both of these code samples

to be “expert.”

For Repeating Code within an if and its else, all five

instructors were unanimous on the code samples from the

comprehension questions: the novice pattern included repeated

code, while the more expert pattern eliminated the repeated

code and, in doing so, eliminated the entire else block.

However, only three instructors chose the similarly-styled

code from the readability/style set. One instructor thought the

novice pattern was best, and one thought that all the options

were equal. We followed the majority opinion in determining

which was the “expert” code.

For A Series of if statements for Exclusive Cases, all code

samples in the readability/style set included four conditional

statements, and the first if statement included a return. The

novice pattern used if statements for all four conditionals,

one sample used an if statement following the return
and the rest else if statements, and the last sample only

used else if statements following the initial if. Instructors

were split between the last two samples, with four instructors

indicating that else if was not necessary if the preceding

if statement included a return, and one indicating that it

was. Therefore, for the readability/style question, we consider

both code samples to be “expert.” For the comprehension

questions for that topic, there were only two conditionals and

neither included a return. Three instructors preferred the

else if version, one preferred two if statements, and one

thought both were equal.

We were surprised by the disagreement among instructors

for the latter two topics, since some instructors preferred the

novice pattern in some cases. The disagreement suggests that

the severity of a novice pattern may be context-dependent. We

discuss this further in the Threats to Validity section.

B. Participants and Method

We recruited participants from Institution B who were tak-

ing the second or third semester course of the programming-

intensive sequence. Students could not take those two courses

concurrently. Instructors at Institution B explained that for

all of the topics on the survey, students would have been

taught to avoid the novice patterns in the first course of the

programming-intensive sequence. Students would have learned

the expert patterns from examples and from lectures, and

would get feedback and/or point deductions if TAs or in-

structors saw the novice patterns in their homework. However,

instructors also noted that detecting these patterns was time-

consuming and could not be done thoroughly for all assign-

ments. Further, some students persisted in using the novice

patterns in their second and third semester of programming

courses.

The instructor of the two courses offered students

extra credit for completing the survey (available at

https://tinyurl.com/RICE-Survey-pdf) At the beginning of the

online survey, students were invited to participate in the re-

search, but they could still complete the survey for extra credit

if they declined. Approximately 500 students are enrolled

across the two courses. We include data from 231 students

in our analyses: these students consented to participate in the

research, were 18 or over, and answered all readability/style

questions and at least 80% of the comprehension questions

by the deadline announced for receiving extra credit. Of these

231 students, 75 were enrolled in the second-semester course

and 156 were enrolled in the third-semester course.

C. Results

Across all topics, students identified the expert code as the

most readable in 65% of responses. Agreement varied widely

by topic, from 24% of students agreeing that code should not

be repeated within an if and its else, to 90% agreeing that

using && was more readable than nested if statements (Table

I).

1) H1, Prevalence - Partially Supported: Evidence from

our sample of students indicates that for the first four patterns

in Table I, at least 20% of the population of students would

find a non-expert code snippet to be most readable (z-tests,

with Bonferroni-corrected p < .01, Table I). For three of

these topics, a majority of students chose one of the novice

code snippets as more readable than the expert code. 74% of

students found a non-expert code style most readable for at

least two of the seven topics (z-test for a population mean

of ≥20% is significant, p < .0001), and students chose an

average of 2.49 non-expert code blocks as most readable,

supporting our hypothesis that novice programmers would

choose at least two non-expert solutions as most readable.

Students in the third-semester class were more likely to

select the expert code (for both best style and most read-

able). A logistic regression with fixed effects for question

type (readability, style), and random effects for student, on

selection of expert code, found a significant effect for course

(t(3231) = 3.37, p < .001). Overall, 57% of responses from

second-semester students chose expert code as most readable,

compared with 68% for third-semester students. Considering

only third-semester students, z-tests for population proportions

for three of the first four topics in Table I are still significant

at a Bonferroni-corrected p < .01 for at least 20% of students

(all p < .0001 for both Boolean Return topics and Repeating
Code within an if and else).

On the code writing question, 59% of students wrote correct

code that used an if statement to check the condition and

explicitly return true, compared to 34% of students who

gave the correct expert pattern answer of returning the boolean

condition (7% of students wrote non-functional code). 11 of

the 16 students who wrote non-functional code used an if
statement incorrectly, including returning true when the the

condition was true but not having a return statement for when

the condition was false. Overall, 64% of students used an if
(148/231), and, of students who wrote functional code, 64%

(137/215) used if. Both ways of measuring usage of if
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TABLE I
SURVEY RESULTS: SELECTION OF EXPERT CODE AS MOST READABLE AND BEST STYLED, AND COMPREHENSION ACCURACY

Topic
Agreed Expert Code Was:

z-test McNemar
Comprehension

Most Readable Best Styled Both Good Style Poor Style

Boolean Returns with Operator 39% 71% 36% p < .0001* p < .0001* χ2 = 62 91% 93%

Boolean Returns without Operator 58% 86% 52% p < .0001* p < .0001* χ2 = 47 95% 94%

Special Cases with General Solution 71% 94% 70% p = .0008* p < .0001* χ2 = 50 72% 81%

Repeating Code within if and else 24% 25% 10% p < .0001* p = .80 χ2 = 0.1 86% 86%

For vs. While loop 84% 81% 74% p = .92 p = .31 χ2 = 1.4 67% 76%

if statements vs. else if (exclusive cases) 86% 92% 82% p = .99 p = .020 χ2 = 6.1 92% 86%

Nested if statements vs. && 90% 89% 84% p > .99 p = .86 χ2 = 0.2 75% 77%

*Bonferroni-corrected p < .01 (that is, the raw p-value < .0014). p-values given above are raw.

z-tests examined if the population proportion was ≥ 20% for students thinking that novice code was more readable than expert code.

McNemar tests examined if students’ agreement with expert choices were different for style vs. readability.

support Hypothesis 1 for code writing with novice patterns

(both z-tests for a population mean of ≥20% are significant,

p < .0001). The third-semester students were more likely to

use expert style than the second-semester students (42% and

16%, respectively), and were less likely to use if (56% and

81%, respectively). However, repeating the corresponding z-

tests with the third-semester students alone yields the same

results (both z-tests for a population mean of ≥20% are

significant, p < .0001).

The pattern of code that students identified as most readable

for Returning Boolean Values with an Operator was predictive

of whether or not they wrote expert style code on the matched

writing task (logistic regression; main effect for identifying

the expert pattern as most readable: t(212) = 7.28, p < .001):

68% of students who marked expert code as most readable

for this topic actually produced code that matched the expert

pattern, and 85% of those who marked the novice code as most

readable for this topic produced code that matched the novice

pattern. Thus, there was high agreement between students’

readability preferences and style of coding.

2) H2, Differences in Readability vs. Style - Supported:
When asked which code snippets had better style, students

identified an expert code snippet in 75% of responses. Using

logistic regression, we found that students were significantly

more likely to identify expert code as best styled than to

identify it as more readable (model also included a ran-

dom effect for student; effect for style versus readability:

t(3232) = 8.07, p < .001). This effect varied by topic:

McNemar tests comparing agreement with expert choices for

style vs. readability were significant for three topics, with

more students selecting the expert choice for style than for

readability for: Returning Boolean Values with Operators,
Returning Boolean Values without Operators, and Extraneous
Cases (all Bonferroni-corrected p < .01, see Table I for test

statistics).

Regardless of their agreement with expert choices, students

frequently selected different code blocks as being most read-

able versus best styled. Only 39% of students made the same

choice across the readability and style questions for Repeating
Code within an if and its else, while 50–75% made the

same choices across both questions for the two Returning

Booleans topics, A Series of if statements for Exclusive
Cases, and Extraneous Cases. Students made the same choice

for style and readability more than 80% of the time for each

of the final two topics (Conjoining Conditions with Nested
if Statements, and for vs. while Loops). Overall, these

results demonstrate that students do not always consider their

own sense of readability to be indicative of what an expert

would call well-styled. We consider the implications of this

disconnect in the discussion.

3) H3, Comprehension - Not Supported: Although many

students selected non-expert code as more readable than the

expert code, we did not find evidence that accuracy on the

comprehension questions was affected by whether the code

used an expert or non-expert pattern (logistic regession, with

random effects for question and student, and fixed effects for

non-expert style, question topic, and interaction between non-

expert style and topics; t(7287) = 0.379, p = .70 for non-

expert style). There was also no evidence that students were

more accurate on the type of code snippet for each topic

that they had selected as most readable (logistic regression

on comprehension scores, with random effects for question

and student; fixed effect of matching one’s choice of most

readable: t(7299) = 0.212, p = .83). These results do not

support hypothesis 3. We did not separate students by course

because course was not significant in a logistic regression on

comprehension scores (t(7286) = 1.281, p = .20).

In an exploratory analysis, we compared style on the code-

writing task to comprehension of the matched, expert-styled

code for Returning Booleans with Operators, restricting the

analysis to students who had written functional code. A chi-

square test on scores (0-2) and writing style (optimal vs. using

an if) was significant (χ2 = 6.3, p = .042). However,

comprehension was high for both groups, with average scores

of 1.89/2 for students with optimal writing style, and 1.80/2

for students who used if (92% and 82% of each group,

respectively, were correct on both comprehension questions).

Accuracy overall on the comprehension questions was high

(Table I). Overall accuracy was above 85% for three of the

seven topics, and only one topic (for vs. while Loops) had
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less than 70% accuracy for one of the code blocks. Accuracy

was especially high for all code blocks for the two topics

on Returning Boolean Values (> 90%), which is notable

because many students selected the novice code as more

readable for those topics. We note that three code blocks in

the comprehension questions inadvertently had missing semi-

colons that would have prevented the code from compiling

(the while loop block and both blocks for Repeating Content
within an if and else). Most students did not notice these

errors, with a maximum of 20 students per question answering

that the code would not compile. We removed from our

corresponding means and analyses all such students.

To attempt to assess whether students might be having more

difficulty comprehending some of the code despite choosing

the correct answer, we examined the amount of time students

spent on the questions with the expert code patterns versus

the non-expert code patterns. Comprehension questions asked

what the output would be for 2-3 inputs for a particular

code bock. Time spent was aggregated across all inputs

involving a particular topic and code block. Since the survey

was self-paced, students could take breaks if they wished.

Therefore, as pre-specified in the registered analysis plan, only

students who answered each question were included; times that

exceeded 20 minutes were removed; of the remaining data,

times that exceeded three standard deviations above the mean

time for a single code block were also removed. A repeated

measures analysis of variance predicting time spent, with a

random factor for student, did not find a main effect of the

expert versus non-expert code patterns (F (1, 3058) = 0.414,

p = .52), although there was a main effect of question topic

(F (6, 3058) = 258, p < .001) and an interaction between

question topic and code pattern type (F (6, 3058) = 9.31,

p < .001). We note that while the timing data was not normally

distributed, a repeated measures ANOVA is still appropriate,

under the assumptions of the Central Limit Theorem, given

our large sample size. The lack of a significant main effect

indicates that any differences in timing were not in a consistent

direction. However, the significant interaction indicates that

there were differences in time spent on novice vs. expert

code for some topics. Logistic regressions found significant

differences in timing for two topics (using α = .007 as the

Bonferroni-corrected .05). For Returning Boolean Values with
Operators, students responded more quickly to expert code

than to non-expert code (29s vs. 37s; t(444) = 2.82, p =
.005). In that case, the expert code was shorter. However, for

Repeating Code within an if and else, students responded

more quickly to the novice code, which was longer (91s vs.

116s; t(430) = 3.86, p = .0001). Overall, the timing data

do not provide support for the hypothesis that students would

more easily comprehend the non-expert code patterns.

D. Threats to Validity

While our study attempts to identify connections between

novices’ readability preferences, their comprehension, and

their ability to identify expert-style code, there are several

reasons why this experiment may not have fully assessed these

connections or why the results may not generalize outside

of the experimental context. First, the survey context may

have impacted students’ responses. Extra credit was given for

completing the survey regardless of whether the answers were

correct, potentially leading students to spend less effort than

they would in a higher-stakes context. While the high rates

of accuracy on the comprehension questions suggest some

reasonable level of student engagement, lack of effort could

manifest differently in the readability and style questions as

opposed to the comprehension questions. Additionally, the

existence of two separate questions, one about readability and

one about style, addressing the same code, may have lead

students to believe they should give different responses to each

question. This would lead to an overestimate of students’ true

beliefs about the disparities between style and readability.

Our survey focused on code snippets, rather than full pro-

grams, which may also lead to lack of generalization outside of

the survey context. We used short code examples to examine

many topics without over-burdening students’ time. However,

the classification of something as exhibiting the best style or

being the most readable may be dependent on the broader

design of the program, meaning that choices based on a snippet

do not fully capture the novice-expert pattern distinction. We

also saw disagreements among the eperts for some of the

topics. This could mean that for simple code blocks, these

distinctions are not as relevant or salient, or that in the specific

options we gave, there were multiple choices that exhibited

expert-like features.

The other significant threats to validity center on our

comprehension measures and the limitations of the data we

collected. We collected code writing data for only one topic,

and thus the results may not generalize to other topics. Our

comprehension questions asked only to give the output of code

based on a specific input, which ignores a number of other

measures of comprehension. Specifically, we did not assess

any overall understanding of the code, nor did we measure

ability to successfully modify or debug code that followed an

expert versus a novice pattern. The topics that we focused on

were also limited to code within a single function, and we

acknowledge that other structural issues are also important,

such as how to break a problem into individual functions and

object-oriented design patterns. Finally, for some comprehen-

sion questions, accuracy was near ceiling. It is possible that

the impact of readability on comprehension is only noticeable

when the code is more difficult to understand. Examining

response time data was intended to address this issue to some

extent, but does not address possibilities like lower readability

only interfering with comprehension in contexts with higher

working memory load.

VI. DISCUSSION

Results partially support the Prevalence hypothesis (H1),

indicating that at least 20% of second- and third-semester

students do not find expert structures to be most readable for

four of the topics on the survey. This suggests a problem for

instruction that aims to improve the elegance of novices’ code:
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doing so may cause students to write in a way that they find

less readable. However, results also support the Readability

vs. Style hypothesis (H2), indicating that students are more

likely to agree that expert code is best styled, compared to

most readable. Further, choosing expert code as best styled

was common (over 80% for five of the seven topics). This

suggests that even when students perceive expert code as less

readable, they may still be inclined to learn it because they

believe it is preferable to others. Further, the lack of support

for the Comprehension hypothesis (H3) and the high scores

for comprehension of expert code (over 80% for five of the

seven topics) indicates that there is no reason to assume that

students will have difficulty comprehending expert code just

because they think it is less readable.

These findings challenge the assumption, implicit in prior

work (e.g., [25], [26]), that code preferences are tightly

coupled to comprehension. We note that [25], [26] dealt with

preferences in writing code, not reading code, and further that

our exploratory analysis suggests that code-writing patterns

are predictive of code comprehension. However, readability

preference was predictive of writing style on the matched task

for one topic, suggesting that readability preferences on other

topics may likewise be correlated with writing preferences.

Further, we found that while code-writing patterns are predic-

tive of code comprehension, the two are not tightly coupled:

81% of students who wrote correct but poorly-styled code

were correct on both comprehension questions for the matched

task with code written in expert style. While students who

write poorly may be less likely to understand expert code,

we should not assume that they can’t. The act of evaluating

one’s own work activates knowledge that may not have been

available when the work was done [18]. Therefore, novices

may start out by writing code that reflects their mental model

in that moment, but may be willing and able to revise it, and

may learn through that process. Future work should continue

to explore the links between novices’ code writing, code

comprehension, code revision, and readability preferences.

While both the pilot and the follow-up study revealed that

many students do not find expert code to be most readable,

this effect was more pronounced in the pilot. Further, while

students in the pilot seemed to overestimate their compre-

hension of expert code, students in the follow-up seemed to

underestimate it (in comparisons of readability choices and

comprehension scores). The follow-up study was designed to

be confirmatory, unlike the pilot study, so we give greater

weight to those results. However, we caution that our find-

ings on novice patterns may not generalize to novice/expert

differences in usage and comfort with built-in functions.

A. Implications for Instructional Design

Students in the third-semester course were more likely to

select expert code as most readable and best styled, compared

to students in the second-semester course. This indicates that,

with normal instruction, students are learning to recognize

and feel comfortable with expert patterns. However, many

students will still find expert patterns to be less readable than

novice patterns. Helping all students feel comfortable with

expert patterns, and helping them use those patterns, will likely

require targeted interventions.

One barrier to promoting good style is the difficulty of

detecting poor style. Without automated detection, students in

large courses cannot get consistent feedback, and students are

unlikely to improve their style unless their grades depend on

it. While existing tools like Submitty [20] and PMD [8] can

detect some of these patterns, they are not in widespread use

in programming courses, perhaps because of the set-up and

customization required from the instructor. Therefore, there

is a need for easy-to-use tools that detect common novice

patterns.

B. Implications for Programming Environment Design

The novice patterns presented here are likely to be familiar

to many instructors of programming classes. While static

analysis tools exist to detect some of these patterns, others

are not currently detected, and some, such as extraneous cases
may require dynamic analysis. Our findings suggest that many

students who make these errors would be able to understand

the expert patterns. Therefore, it would be worthwhile to try

lightweight solutions that detect novice patterns and suggest

an expert pattern instead.

C. Conclusion

This paper presented a within-subject experiment that as-

sessed 231 novices’ perceptions of code readability and style,

and their ability to comprehend code written with expert

and novice patterns. This work codifies topics where students

are likely to use or prefer novice patterns. While this paper

examined Java, these topics are relevant across programming

languages. Further, this work, like [28], shows that coding

style is multi-faceted, and is composed of several skills.

Therefore, students may have an intermediate level of style

knowledge (e.g., a student may recognize good style without

producing it).

Our results indicate that, for four topics (Returning Boolean
Values with and without Operators, Extraneous Cases, and

Repeating Code within an if and its else), at least 20%

of novice programmers in their second or third semester of

programming-intensive courses will find the expert pattern to

be less readable than the novice pattern. Still, many novices

will recognize which patterns are preferred by experts. And

finally, for these seven patterns, comprehension was generally

high and did not differ by expert/novice pattern, or by students’

stated preferences for readability. Two reasonable hypotheses

for why students use poor style are (1) they don’t know

what good style is and (2) they can’t understand code that

is written with good style. Our results do not support either of

these hypotheses. Therefore, for these novice patterns, many

students may benefit from tools which detect the patterns and

offer suggestions. While some students may need support to

understand the expert patterns, many students do not, even

those who perceive expert patterns to be less readable.
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