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Figure 1: An example of an unsolved Faded Parsons Problems (left) and the completed solution (right) using a Premature 
Return pattern to solve a Higher-Order Function problem. Students solve the question by both rearranging and completing 
the given lines of code. 

ABSTRACT 
Learning to recognize and apply programming patterns — reusable 
abstractions of code — is critical to becoming a profcient computer 
scientist. However, many introductory Computer Science courses 
do not teach patterns, in part because teaching these concepts re-
quires signifcant curriculum changes. As an alternative, we explore 
how a novel user interface for practicing coding — Faded Parsons 
Problems — can support introductory Computer Science students in 
learning to apply programming patterns. We ran a classroom-based 
study with 237 students which found that Faded Parsons Problems, 
or rearranging and completing partially blank lines of code into 
a valid program, are an efective exercise interface for teaching 
programming patterns, signifcantly surpassing the performance 
of the more standard approaches of code writing and code tracing 
exercises. Faded Parsons Problems also improve overall code writ-
ing ability at a comparable level to code writing exercises, but are 
preferred by students. 
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1 INTRODUCTION 
Despite the increasing relevance of programming [2, 5, 31], devel-
oping this skill continues to be difcult for novices to learn in part 
because programming is a complex task consisting of many skills 
and types of knowledge [3, 9, 17]. 

One such skill, the ability to recognize and use programming 
patterns, is a distinguishing characteristic between experts and 
novices [29]. Programming patterns are partial implementations of 
reusable, higher-level concepts which can achieve a goal. For exam-
ple, the solution in Figure 1 represents a “Loop: Premature Return” 
pattern, searching the list backwards and returning a higher-order 
function as soon as an even number is found. This pattern consists 
of a conditional return within a loop, with a catch-all return outside 
of that loop. This same pattern, with diferent code, could be used 
for many similar purposes, such as to fnd the frst occurrence of a 
character in a string or the largest even number in an increasingly 
sorted list. These patterns provide the building blocks that allow 
programmers to efciently tackle more complex tasks. However, 
despite their importance, they are often not explicitly taught in CS1 
classrooms [25]. 

Programming patterns can be challenging to teach because they 
rely on a foundation of conceptual knowledge [37]. For example, 
the pattern in Figure 1 requires understanding of for loops and 
range(). Researchers have developed methods to teach program-
ming patterns, but these involve signifcant modifcations to the 
structure of the course curriculum [19, 20, 22, 30, 37]. For exam-
ple, Pattern-Oriented Instruction [25], as part of their guidelines, 
proposes discussions after all problem-solving activities and pre-
pared material to compare patterns after complex exercises. The 
practical difculties of introducing large-scale innovations to class-
room teaching suggest that an approach that minimizes changes 
to the status quo will lead to better adoption over major structural 
changes. 

This work is licensed under a Creative Commons Attribution International 
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Most computer programming classes already make use of as-
signed programming exercises, highlighting opportunity for easily 
integrated improvements. Many programming courses use a com-
bination of code tracing exercises, in which students predict the 
behavior of instructor-provided code, and code writing exercises, 
in which students write code in response to an exercise prompt. In 
this work, we compare these commonly used exercise interfaces, 
as well as a recently-introduced exercise interface, Faded Parsons 
Problems (Figure 1) [34], as a low-friction way to teach program-
ming patterns. In this paper, we emphasize exercise interfaces as 
one way to distinguish between diferent types of exercise. We fnd 
that the content of existing code tracing and code writing exercises 
can be easily re-purposed as Faded Parsons Problems. 

Faded Parsons Problems are a particular variation of Parson 
Problems [26]. In Faded Parsons Problems, creators give students a 
set of partially complete lines of code. Students must fll in blanks 
in the lines of code with valid expressions as well as rearrange 
the lines of code to construct a valid program. Unlike code tracing, 
with Faded Parsons Problems, students must actively construct the 
structure and logic of a program. However, students are heavily 
constrained by the given lines of code, thus deliberately excluding 
many valid alternative solutions to the exercise. 

We ran an in-situ study as part of an introductory Computer 
Science class and found strong evidence to confrm that Faded 
Parsons Problems are efective at teaching programming without 
any modifcations to instruction. Our study also explores how Faded 
Parsons Problems afect transfer to student code writing ability in 
general, as well as qualitative data to understand how students 
engage with Parsons Problems and limitations of code writing 
exercises. 

Our contributions are as follows: 
• We deploy a system which supports a range of programming 
exercise interfaces which scales to a class of hundreds of 
students and is well-suited for remote learning. 

• We confrm the efcacy of Faded Parsons Problems in teach-
ing students to recognize and apply programming patterns 
to relevant exercise prompts. 

• We confrm that practicing with Faded Parsons Problems 
produces similar transfer to code writing ability as directly 
practicing with code writing exercises. 

• We probe student attitudes towards Faded Parsons Prob-
lems, fnding students prefer working with Faded Parsons 
Problems when given a choice and providing insights as to 
why. 

2 RELATED WORK 

2.1 Programming Patterns 
Patterns (or plans, schemas, templates) have several subtly difer-
ent defnitions in the literature [1, 8, 21, 25, 33, 36, 37]. In general, 
they are higher-level, reusable abstractions of code that achieve a 
specifc goal. Patterns are also hierarchical and multi-layered, with 
some smaller patterns contained in other larger ones. The impor-
tance of patterns is supported through chunking from cognitive 
theory, in which people, as they view examples with identifable 
similarities, construct and store more complex patterns as single 
cognitive “chunks” [6, 21]. 

Studies have found evidence that one way the behavior of expert 
programmers is diferent from novices is in their ability to leverage 
patterns in understanding and writing code [29, 36]. However, pat-
terns remain out of the focus in many Computer Science classes, 
leading to proposals for signifcant instructional shifts to address 
this concern. 

Muller et al. [25] propose Pattern-Oriented Instruction in intro-
ductory Computer Science classes, where patterns are explicitly 
incorporated into a course’s instruction. They found that this ex-
plicit change to instruction led to novices improving their problem 
decomposition and solution construction skills. Xie et al. [37] also 
designed a curriculum focused on explicit instruction of templates. 
They fnd some evidence that this new template-oriented curricu-
lum improved student coding ability. 

Xie et al. [37] also note the importance of learning syntactic or 
conceptual knowledge before learning patterns. That is, students 
must understand all the building blocks of a pattern before being 
able to understand the pattern itself, and similarly for writing build-
ing blocks and patterns. That is, though patterns are a foundational 
skill for programming, they are not entirely introductory. This may 
explain why many CS1 classes today still do not focus on explicitly 
teaching patterns. 

We build on the existing work showing that patterns are both 
important and could be taught better in most CS1 classrooms. Our 
work difers, however, in its focus on a much simpler instructional 
change. Our work focuses on assigned programming exercises – a 
part of the course where students already spend considerable time. 
Instead of updating curricula to explicitly teach patterns to stu-
dents, we focus on whether students can recognize and incorporate 
patterns more efectively by working on programming exercises 
with diferent user interface. 

2.2 User Interfaces for Program Exercises 
Several frameworks have been proposed for conceptualizing user 
interfaces for programming exercises. Cutts et al. [9] propose that 
programmers must master moving between three levels of abstrac-
tion: English, pseudocode, and code, proposing diferent exercise 
interfaces to target diferent levels of abstraction. Bryant et al. [4] 
extend this further, proposing fve levels of abstraction. They posit 
that expressing algorithms in human language, when compared to 
code, changes how programmers engage with their programming 
task, suggesting that pair programming causes programmers to 
focus more on an intermediate level of abstraction compared to 
when programming alone. 

Shi et al. [32] motivate their work from a diferent perspective, 
focused on the diferent stages of problem solving. They design 
Pyrus, an interface where students work together with limited 
knowledge to focus student attention and growth on the planning 
stage of the problem-solving process. By constraining students’ 
actions in solving the exercise, they fnd students spend more time 
planning. Python Tutor [15] has become a popular educational tool 
for introductory students because its granular visualizations and 
debugging functionality are well-suited to novice programmers. 

Our work is motivated by these frameworks and interfaces, ex-
ploring how the design behind programming exercise interfaces af-
fects how students engage with the content. Thoughtfully considering 
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these designs can support programmers in more efectively practic-
ing specifc programming knowledge or skills. Our work reveals 
insight into our recently introduced interface, Faded Parsons Prob-
lems [34]. 

2.3 Parsons Problems 
Parsons Problems (or Parsons Puzzles, code scrambles, Code Man-
gler Problems) require students to unscramble lines of code to 
construct a syntactically and logically correct program. They were 
originally designed to be an engaging task for students to practice 
syntax drills [26]. They share many similarities with block-based 
programming languages such as Scratch, Snap!, Alice, and Blockly, 
which provide an engaging introduction to certain introductory 
topics [23, 28, 35]. However, unlike block-based languages, Parsons 
Problems support the full expressivity of text-based programming 
languages such as Python. 

Zavala and Mendoza [38] found support that code comprehen-
sion (e.g., code tracing exercises), code manipulation (e.g., Parsons 
Problems), and code writing are separate skills that should be mas-
tered in that order. Ericson et al. [12] successfully integrated Parsons 
Problems into teaching, fnding that Parsons Problems, when com-
bined with worked examples, provide similar learning gains to code 
writing or bug detection in a CS1 classroom while taking only 70% 
of the time. Ericson et al. [11] extended this study, fnding similar 
results for Adaptive Parsons Problems, which dynamically adjust 
difculty by adding or removing unnecessary or incorrect lines of 
code. 

However, Denny et al. [10] raise concerns that Parsons Prob-
lems may be easily “gamed” by sufciently mature students using 
syntactic heuristics. In our formative study for the present work, a 
student described their strategy for solving Parsons Problems as 
“just kind of moving things around based on test cases, not really 
thinking about the logic.” In previous work [34], we found that solv-
ing a Parsons Problem did not transfer to being able to write code 
for the same question, and attempted to address this limitation by 
introducing Faded Parsons Problems. In Faded Parsons Problems, 
provided lines of code can be partially or fully incomplete. Faded 
Parsons Problems integrate code writing with Parsons Problems, 
providing less syntactic and logic scafolding than standard Parsons 
Problems. 

The present work difers from previous work on Parsons Prob-
lems two ways. First, this work primarily focuses on Faded Parsons 
Problems. Second, this work focuses on teaching programming 
patterns, a targeted subset of general programming ability. 

We focus on three interfaces. Code tracing exercises (Figure 2), 
in which students predict the behavior of instructor-provided code, 
require students to understand a well-designed solution. Code writ-
ing exercises (Figure 3), in which students write their own code in 
response to an exercise prompt, require students to construct a solu-
tion, though possibly a poor one. Faded Parsons Problems require 
students to reconstruct a well-designed solution by using constraints 
to both lock out valid solutions and scafold the solving process. 

3 PROGRAMMING PATTERNS 
Following existing defnitions in the literature, we defne program-
ming patterns as partial implementations of reusable, higher-level 

Figure 2: A code tracing exercise. Students must read the ob-
fuscated code (top) and determine the output from specifed 
argument prompts (bottom) 

Figure 3: A code writing exercise. Students must create a 
functioning program to solve a given exercise prompt using 
an editor with basic IDE functionality like syntax highlight-
ing and auto-completion. 

concepts which can achieve a goal. The programming patterns used 
in this study are specifc to Python and are based in coding struc-
tures. 

We ground our defnition of programming patterns in actual code 
to ensure they contain certain language idioms, some of which are 
specifc to Python. For example, L2 (defned in Table 1) includes the 
use of enumerate(li) in a for loop. A more abstract, language-
agnostic defnition would include more verbose implementations 
such as iterating through range(len(li)) and then also defning 
a local variable from indexing into the list. This example also high-
lights how patterns must be built on both conceptual knowledge, 
e.g., understanding loops, and syntactic knowledge, e.g., enumerate. 
Some of the syntactic features on which patterns are built, such as 
for, may be more fundamental than others. 

The pattern adherence of a given program can be evaluated both 
by the use of control fow elements as well as specifc syntactic 
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elements. An advantage of this is that patterns are specifc enough 
to be efectively captured with automated parsing logic, allowing 
efcient analysis across tens of thousands of submissions. Addi-
tionally, we can check the pattern adherence of a program even 
if the program contains unrelated syntax errors, which happens 
frequently for introductory student submissions. 

Table 1 lists the programming patterns used in this study, along 
with defnitions. These programming patterns were selected by an-
alyzing programming assignments from previous versions of two 
introductory Computer Science courses. That is, existing course 
materials, developed by the instructor, determined which program-
ming patterns were used in this study. 

3.1 Examples of Programming Patterns 
The patterns were selected so the three Loop patterns, L1-L3, would 
appear appropriately early in the course, focusing on foundational 
material. Though these patterns were used in exercises over multi-
ple weeks, tangential concepts covered within the exercises changed 
over the course of the semester. For example, lambdas and higher 
order functions were introduced into the patterns later in the se-
mester. The example in Figure 1, for instance, returns a function 
which takes an argument x and adds it to the last even element 
in the given list. Another exercise using this pattern earlier in the 
course returned True if any numbers in a list are divisible by fve. 
The next two patterns (MR1, MR2) were selected to match course 
content on multiple recursion, focusing on algorithmically challeng-
ing exercises. The fnal two patterns (OOP1, OOP2) included class 
defnitions in order to match course content on Object-Oriented Pro-
gramming, focusing on syntactically and conceptually challenging 

Table 1: Examples of programming patterns and their de-
scriptions. 

exercises. These patterns were chosen to cover a range of diferent 
aspects of programming. 

a

b

c

Goal/Name Description 
Loop: Premature Return (L1) A return within a loop based on 

a conditional, with a fnal return 
outside of that loop 

Loop: Index Value (L2) Use of enumerate to access and 
update both the index and value 
of elements, using both inside the 
loop. 

Loop: Last/Current (L3) Inside a loop, use last and then 
update last to current. 

Stateful Tree Traversal 
(MR1) 

Traverse a Tree in depth-frst-
search using a default argument 
to pass state. 

Multiple Recursion Game 
Simulation (MR2) 

Check for a base case, simulate 
moves, then return based on the 
results. 

Stateful Generators (OOP1) Defne generators as part of a 
class for stateful instance vari-
ables, yielding at the end of loops. 

Mixins (OOP2) Use super to access parent meth-
ods. 

Figure 4: Three diferent correct student submissions to an 
exercise for which students could apply the MR1 pattern. (a) 
A reasonable solution to the exercise which follows the pat-
tern. (b) A reasonable solution to the exercise which does not 
follow the pattern. (c) An overly complex solution to the ex-
ercise which does not follow the pattern. 

3.2 Programming Patterns in Code 
To better illustrate the role of programming patterns in student 
work, Figure 4 contrasts three correct student submissions to a prob-
lem — summing nodes of a Tree at depth 2 — in an open-ended code 
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writing exercise. These submissions were selected from the study 
described in Section 5. All students had immediately previously 
worked on a question computing the depth of a Tree of arbitrary 
height. Submission (a) follows the MR1 pattern. It is very similar to 
the instructor solution for the previous exercise and a reasonable 
solution to this one. Submission (b) is a reasonable submission that 
does not follow the pattern. Instead, it takes advantage of the fact 
that this exercise is asking about a fxed depth within the Tree, 
using nested for loops instead of recursion. While this is a valid 
solution, it defeats the instructor’s motivation to have students 
recognize this exercise as an opportunity to practice recursion to 
navigate Trees. This highlights a challenge of teaching program-
ming patterns, as there can sometimes be other reasonable solutions 
to specifc exercises. Submission (c) is a correct submission which 
does not follow the pattern, and is overly complex and verbose. It 
is not uncommon for students to create poorly structured solutions 
such as these in auto-graded code writing exercises, due to the lack 
of granular feedback and the iterative manner with which students 
can create solutions. 

Though code writing exercises are an efective form of practice 
for programming, the example above illustrates why they may be 
ill-suited for helping students learn how to use patterns as students 
only sometimes construct solutions following a relevant pattern. 
If students are given the freedom to solve two related exercises in 
entirely diferent ways, they miss an opportunity to compare and 
contrast two applications of the same pattern, an important oppor-
tunity to generalizing the abstraction. Code tracing exercises allow 
instructors to control the structure of code students are interacting 
with, providing a good opportunity for teaching patterns. However, 
they do not give students any practice in constructing algorithms 
or syntax to create a program. 

4 USER INTERFACE FOR PROGRAMMING 
EXERCISE COMPARISON 

We built a Flask app that extends Karavirta et al.’s js-parsons library 
[16] to support all exercise interfaces used in this study, including 
Faded Parsons Problems. The system supports Python program-
ming exercises—traditional code writing, Faded Parsons Problems, 
code tracing, code skeleton, and multiple-choice comprehension— 
as well as short answer survey questions. A nearly complete Faded 
Parsons Problem exercise can be seen in Figure 5(c). In Faded Par-
son Problem exercises, the user is initially given a set of blocks 
containing partially incomplete code on the left including optional 
print and comment statements (d) for debugging, with the initial 
function signature populated on the right. The lines on the left are 
initially alphabetized, as suggested by Cheng and Harrington [7]. 
To solve a Faded Parsons Problem, users drag fragments in a correct 
order and indentation on the right and complete the blanks (e). 

All exercises display the problem statement (b) above the in-
terface. Users can run pre-confgured tests as often as they want, 
which displays detailed output from the test cases (h) including: 
function arguments, expected output, actual output, any standard 
output from print statements, and any raised exceptions. The type 
of feedback is consistent across all programming interfaces. Not 
pictured: At any point, users can return to a list of exercises for 
that week. Additionally, users can view a correct solution to the 

exercise after solving the question or expending enough efort on 
the exercise based on custom time- and submission-based logic. 

The Flask app logs anonymized data from participants, and ran-
domizes treatment selection. The autograder is a separate worker 
that uses RQ1 to safely execute arbitrary Python code, allowing 
execution-based feedback. Instructors manually confgure the blanks 
in Faded Parsons Problems. 

5 EVALUATION 
We run a study to explore the following research questions: 

RQ1: How does practice with diferent exercise interfaces afect 
student acquisition of programming patterns? To be able to learn 
a pattern, students must frst be exposed to examples of it. We 
measured Pattern Exposure to see if students encounter pattern-
adherent code as they craft their own solution or by viewing the 
instructor solution. We also measured Active Pattern Exposure, 
a subset of this, to see if students craft a pattern-adherent solu-
tion. In later exercises, we measured Pattern Acquisition to see 
if students, after being exposed to examples of a pattern, are able to 
recognize the opportunity and apply a pattern in a code writing ex-
ercise. We note that students can apply a pattern without correctly 
solving an exercise, such as the code in Figure 5. 

RQ2: What is the general efcacy of practice with diferent exercise 
interfaces? This work is motivated by the ease in which instructors 
can replace existing exercises with diferent exercise interfaces. To 
that end, we must understand the educational impact of diferent 
exercise interfaces beyond patterns. Since code writing exercises 
are often used as a de facto measurement of programming exper-
tise, we measured Code Writing Transfer to see if students can 
successfully transfer [27] what they learned in each interface to 
similar code writing questions regardless of any pattern use. 

RQ3: What is student perception of working with Faded Parsons 
Problems? In several exercises, students were able to select which 
exercise interface they worked with, which implicitly suggests pref-
erence. Students were also asked Likert-scale and open-ended sur-
vey questions to understand their Preference surrounding Faded 
Parsons Problems. These survey questions also provide insight into 
the Perceived Difculty of these exercise interfaces, which we 
compare to the Actual Difculty. 

5.1 Study Environment and Participants 
We partnered with an instructor of a CS1 class at a large US research 
university with IRB approval to run our evaluation study in three 
parts. Throughout the course of the semester, 237 students (P1-P237, 
111 male, 120 female, 6 unreported) agreed to the Terms of Consent 
and interacted with our system. The study was deployed as extra 
credit assignments appended to 10 of the 12 weekly lab assignments. 
Students could begin the questions in an in-person lab, but had a 
week to continue working on the exercises on their own. The extra 
credit exercises were efort-based (as opposed to completion-based) 
to better match how labs were assessed. The instructor approved 
all exercises used in the study, but was not aware of the specifc 

1https://python-rq.org/ 

https://1https://python-rq.org
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a
b

c

d

e

g

h 

f

Figure 5: A nearly correct Faded Parsons Problem fnding the depth of a Tree. (a) Optional Timer. (b) Problem Description. (c) 
Faded Parsons Problem interface; participants can drag blocks between the bin (left) and the solution (right). (d) An optional 
print block being dragged to the right. (e) A blank that has been flled in with code by the student. (f) Students can always 
navigate back to the exercise list or (g) run tests on their current solution. After efort-completing a exercise, they can view 
the instructor solution (g). (h) Descriptive test case results up to the frst failed test. 
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research goals to ensure other course content and instruction were 
not modifed. 

5.2 Method for Constructing Faded Parsons 
Problems 

Researchers selected which code segments to blank out for Faded 
Parsons Problems. Required function arguments were never blanked 
out, unless determining the function arguments was critical to the 
exercise (e.g., recognizing and using an optional argument). If a 
variable name was blanked out in its assignment statement, all 
other references to that variable were also blanked out to avoid con-
fusion in case students selected a diferent name. Top-level control 
fow tokens were never blanked out, though conditionals, constants, 
variable references, and other expressions were sometimes blanked 
out. The amount of code blanked out from exercises ranged from 
0% (only rearranging was required) to 75% of the target code, on 
average blanking out 32% of the code. 

5.3 Study Description 
We report on three studies to answer the research questions. A 
high-level summary is provided in Table 2. Two studies, Study 1 
and Study 2, compared the efcacy of three exercise interfaces — 
tracing, parsons, and writing — in teaching students to acquire 
programming patterns. A qualitative study was run in-between 
these two studies to better understand student perception of Faded 
Parsons Problems. 

Figure 6 summarizes the structure of the two studies. In both 
pattern-focused studies (Study 1 and 2), students knew the concepts 
(e.g., for loops, Tree structures) necessary to compose the patterns, 
but the patterns themselves were not explicitly taught as part of 
the class. These studies began with an exposure phase, in which 
students solved exercises involving diferent patterns and exercise 
interfaces. Knowledge Integration [18], an educational framework, 
suggests that students incrementally acquire generalized knowl-
edge like patterns through new examples, motivating the use of 
multiple exposure exercises for each pattern. The exposure phase 
explores the efcacy of these exercise interfaces in successfully 
exposing students to relevant patterns. The exposure phase is fol-
lowed by an acquisition phase, in which students wrote code 
in response to a prompt where one of the patterns was applica-
ble. This phase explores if students can express their mastery of 
patterns through code writing exercises. The frst study consisted 
of additional exercises between the two phases to explore other 
research questions. There was no explicit indication to students 
of these diferent phases, nor did they receive diferent types of 
instruction or feedback based on the phase. 

In all studies, students worked through exercises in our system 
in a pre-determined order. Students efort-completed a question 
by correctly solving it and passing all test cases or by both spending 
at least 10 minutes on the exercise and making 10 consecutively dis-
tinct submissions (the course instructor determined this defnition 
for efort-completion). After efort-completing a question, students 
were able to view an instructor solution or return to the exercise list, 
after which they could continue on to the next question. Students 
primarily worked in one of three exercise interfaces, as seen in 
Figures 2 – 3, 5: code tracing questions (tracing), Faded Parsons 

Figure 6: Example sequence of exercises for a single student 
for Study 1 and a Study 2 module, highlighting a single pat-
tern. Each block represents a single exercise. If 2 or more 
blocks are vertically touching, it means those exercises were 
consecutive, otherwise some equivalent exercises for other 
patterns (possibly in diferent exercise interfaces) occurred 
between them. The “stacking” of blocks highlights the sim-
ilar fow for other patterns. That is, in Study 1 Week 2, stu-
dents worked on 2 exercises for each of 3 (pattern, exercise 
interface) pairs. Problems in yellow were in the exposure 
phase, where each pattern was associated with a single exer-
cise interface. Problems in gradient blue were in the acqui-
sition phase, always code writing. Grey exercises were not 
analyzed in this study. Study 2 consisted of 2 modules, one 
immediately after the other, represented by the “stacking” 
of the full study. 

Problems (parsons), and code writing questions (writing). Each 
exercise consisted of an exercise prompt (i.e., problem statement), 
an interface to work on it, and test cases with their results up to 
the frst failed test case. Problems were designed such that problem 
statements within a pattern had meaningful diferences and were 
not isomorphic to each other. 

5.3.1 Study 1. This study was designed to compare the efcacy of 
three exercise interfaces — tracing, parsons, and writing — in 
teaching students programming patterns as well as more general 
programming ability. 

The study consisted of patterns L1, L2, L3 (Table 1). In the 
exposure phase, each pattern was paired with one exercise inter-
face such that each exercise interface was used once. For each such 
pair, fve exercises were presented over the course of two weeks. 
Each student efort-completed a total of 15 exercises in this phase, 
and all students saw all exercises in the same order with the same 
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Table 2: High-level attributes of the three reported studies. 

Study Research Questions Participants Exercise Interfaces Duration 
Study 1 RQ1, RQ2 50 tracing, parsons, writing 4 weeks 

Qualitative Study RQ3 50 parsons, writing 2 weeks 
Study 2 RQ1, RQ2 43 parsons, writing 2 * 2 weeks 

exercise interfaces. These exercises measured Pattern Exposure 
and Active Pattern Exposure. 

In the following week, we instantiated all 9 (pattern, exercise in-
terface) combinations: Each student worked on 9 exercises, grouped 
by exercise interface. The order in which patterns were presented 
to students was counterbalanced between exercise interfaces. These 
exercises measured Actual Difculty, as the exercise interfaces 
were independent of the patterns they were paired with in the 
exposure phase. 

Finally, in addition to the three writing exercises from the previ-
ous week, students completed 6 more writing exercises, 2 for each 
pattern. These 9 exercises in total represent the acquisition phase, 
and measured Pattern Acquisition and Code Writing Transfer. 
Both metrics are analyzed based on the exercise interface each 
pattern was paired with in the exposure phase. 

All patterns were selected to be of comparable complexity, and 
the pairing of patterns and exercise interfaces in the learning phase 
was done randomly after all exercises were created. However, be-
cause the study was designed to give a consistent experience to 
every student and a given pattern was paired with only a single 
exercise interface in the exposure phase, better performance on 
that pattern could be due either to that exercise interface being 
more efective for learning, or to the pattern itself simply being 
easier to learn. 

5.3.2 Study 2. This study was designed to more robustly compare 
the efcacy of two exercise interfaces — parsons and writing — 
in teaching students programming patterns as well as more general 
programming ability. This study explores more complex patterns 
(MR1, MR2, OOP1, OOP2) and randomizes interfaces within pat-
terns (unlike Study 1). We do not explore tracing exercises in this 
study due to its poor Code Writing Transfer from Study 1. 

This study consisted of two modules, one following directly 
after the other, with students randomly designated into treatment 
or control. Each module targeted two patterns. The frst module 
covered MR1 and MR2 for all students regardless of treatment, with 
the second module covering OOP1 and OOP2. Assignment was 
counterbalanced, so each student was in the control group for one 
module and the treatment group for the other. 

In the exposure phase of each module, patterns were paired 
with parsons for students in treatment or writing for students 
in control. For each pattern, two exercises were presented over 
the course of one week. Each student efort-completed a total of 4 
exercises in this phase. 

After the exposure phase, students were given two writing 
exercises for each of the same two patterns, for a total of 4 exercises 
in this phase. 

The modules also consisted of exercises that were not analyzed 
for this study. First, at the start of every week, students were given 

a multiple choice comprehension question on the topics covered in 
lab. These questions were added because the exercises in Study 2 
focused on more complex topics. Additionally, each module ended 
with a code skeleton exercise — efectively a Faded Parsons Problem 
with the lines already arranged. We hoped the code skeleton exer-
cises would inform us if students were able to demonstrate mastery 
of the patterns in a more constrained exercise interface. However, 
upon further analysis, we did not present enough skeleton exercises 
to analyze. 

Study Diferences: Below, we emphasize some major difer-
ences between the studies that may be helpful in interpreting the 
results. 

• Randomization: In Study 1, all students saw the same materi-
als. In Study 2, students were randomly assigned to treatment 
or control. 

• Dosage: In Study 1, students worked on 5 exercises for each 
pattern in the exposure phase. In Study 2, they only worked 
on 2. 

• Pattern-Exercise Interface Pairings: In Study 1, each exercise 
interface was used for a single pattern in the exposure phase, 
which may have encouraged students to look for similar-
ities. In Study 2, each exercise interface was used for two 
independent patterns. 

• Topics: In Study 1, problem topics changed meaningfully 
from week to week to match course curriculum, for example 
focusing on higher-order functions or lambdas. In Study 2, 
the exercises focused on topics which extended but were 
supplementary to those in the course curriculum. 

5.3.3 Subjective Study. Between the Study 1 and 2, we ran a study 
focused on gaining preference and self-reported insights from stu-
dents. This study did not focus on any patterns. In this study, af-
ter seeing each problem statement, students were able to choose 
whether to work on the exercise as parsons or writing. Addi-
tionally, students flled out a survey with questions about their 
perception of Faded Parsons Problems. 

6 RESULTS 
The following subsections frst describe the statistical measures 
used and next the data cleaning process for the study. This is fol-
lowed by analyses of the results corresponding to the major research 
questions. We report on the degree to which students acquire pro-
gramming patterns (Section 6.3), what students learn using Faded 
Parsons Problems beyond learning programming patterns (Sec-
tion 6.4), and students’ subjective responses (Section 6.5). We then 
synthesize these results (Section 6.6). 
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6.1 Statistical Measures 
Unless otherwise stated, statistical signifcance is computed as the 
proportion of relevant submissions matching the measurement 
in question grouped by student. For Study 1, we analyze the 50 
students (17 male, 31 female, 2 unreported) that efort-completed 
all exercises in the study. We pair by student and use the Friedman 
test [14] to determine if there is a diference between the three 
interfaces, then use pairwise Wilcoxon Signed-Rank tests to test 
for signifcance. For Study 2, we analyze the 43 students (17 male, 
23 female, 3 unreported) that efort-completed all exercises in the 
study. We use Mann-Whitney U tests to test for signifcance. 

6.2 Data Cleaning 
6.2.1 Labeling Patern Adherence. For all 7 patterns used in this 
study, researchers created code to automatically detect if a given 
code submission adhered to the pattern. The code relies on custom 
string parsing, as submissions might adhere to a pattern even if 
they cannot be parsed as a valid Abstract Syntax Tree, e.g. if a 
: was missing from a conditional statement. To test the validity 
of this approach, for each pattern, we randomly selected 25 sub-
missions from the relevant exercises that adhered to the template 
and 25 submissions that did not. We then removed the algorithm-
generated labels, shufed the results within each pattern, then 
had two researchers manually annotate the pattern adherence of 
each submission. We computed Cohen’s Kappa score [13] to mea-
sure agreement between the annotators and between each of them 
and the algorithm-generated labels. We found a kappa of 0.89 be-
tween the annotators, and an agreement of .94 and .88 respectively 
between each annotator and the algorithm-generated labels, in-
dicating very good agreement. This gives us confdence that the 
algorithm can generate labels with comparable accuracy to a hu-
man. 

6.2.2 Handling Corrupt Data. Researchers examined a sample of 
the logs and some aggregate data to detect and remove entries 
where students were abusing the system in some way. 

First, because test cases were transparent, some students wrote 
code to return hard-coded values based on combinations of input 
arguments, clearly not trying to actually solve the exercise. To 
address this, researchers added three or more additional test cases 
to each exercise after the study completed. All submissions were 
re-tested for correctness based on success on the full set of test 
cases. 

Second, for parsons and writing exercises, we removed submis-
sions from students if they read and correctly solved the exercise 
in under 45 seconds. We also excluded submissions from students 
where their solution exactly matched the instructor solution includ-
ing the comments explaining the solution. 

Finally, from the remaining data to be analyzed, we manually 
inspected students that did not answer a single writing question 
correctly throughout the study. From this, we remove submissions 
that appeared designed entirely to get past the efort criteria, such 
as adding or removing random characters. Across all three criteria, 
we removed 5 students from analysis. 

6.3 Pattern Acquisition 
The primary motivation of these studies was to understand how 
practice with diferent exercise interfaces afects student acquisition 
of the programming patterns. For students to learn to recognize and 
apply patterns, they must frst be exposed to the pattern. However, 
students can correctly solve exercises without ever writing pattern-
adherent code or reading the pattern-adherent instructor solution. 
We frst analyze if students are exposed to pattern-adherent code 
in the exposure phase, either as they construct their own solution 
or by viewing the instructor solution (Pattern Exposure). We then 
analyze if students recognize and apply the relevant pattern (Pattern 
Acquisition) to writing exercises based on the exercise interface 
paired with each pattern in the exposure phase. Results can be seen 
in Table 3. 

6.3.1 Patern Exposure: Are students exposed to the patern-adherent 
code working on an exercise? We posited that one advantage of 
parsons and tracing is that they both signifcantly constrain the 
solution space, introducing students to particular solutions. There-
fore, we would expect that students are more likely to adhere to 
programming patterns when generating a solution with either inter-
face compared to writing. We separately analyze Active Pattern 
Exposure, if students generate pattern-adherent code themselves 
while completing the exercise, and Pattern Exposure, if students 
ever generate or view pattern-adherent code (e.g., by viewing the 
instructor solution). We analyze both, because research on Active 
Learning [24], in which students practice applying skills instead of 
simply responding to questions, suggests that students will learn 
patterns better if they construct the patterns themselves. 

For tracing, by design, Pattern Exposure is 100% and Active 
Pattern Exposure is 0% as students always view but never construct 
pattern-adherent code. We fnd fnd that parsons are more likely 
than writing to expose patterns. The rate of Pattern Exposure 
is higher for parsons than writing, 97.2% vs. 39.2% (p<.001) in 
Study 1, 87.8% vs. 64.9% (p<.001) in Study 2. The rate of Active 
Pattern Exposure is also higher for parsons than writing by a 
more signifcant margin, 92.4% vs. 4.4% (p<.001) in Study 1, 70.9% 
vs. 36.9% (p<.001) in Study 2. 

6.3.2 Patern Acquisition: Do students recognize and apply the rel-
evant patern in writing exercises? Though students are exposed 
to pattern-adherent code, they may not internalize the patterns as 
a general solution or may be unable to recall them when given a 
relevant exercise prompt. Unlike techniques like Pattern-Oriented 
Instruction [25], students were never given explicit instruction on 
the patterns or when to use them. We analyze whether students 
obtain sufcient mastery from the exposure exercises in each exer-
cise interface to both recognize the opportunity to apply a pattern 
and generate code for that pattern in writing exercises in the 
acquisition phase. 

We fnd that students are more likely to acquire patterns if they 
are frst exposed to them as parsons (or tracing) compared to 
writing. In Study 1, there is no statistically signifcant diference 
in the rate of Pattern Acquisition of parsons (55.3%) and tracing 
(44.0%), though both are higher than writing (20.7%). In Study 2, 
the rate of Pattern Acquisition is higher in parsons than writing 
(43.3% vs. 33.7%, p<.01). 
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Table 3: Summary statistics related to Pattern Exposure and Acquisition, Code Writing Transfer, and Actual Difculty. (*) 
indicates a pairwise-signifcant diference with one other interface while (**) indicates a pairwise-signifcant diference with 
both. 

Tracing 
Study 1 
Parsons Writing 

Study 2 
Parsons Writing 

Pattern Exposure 
Active Pattern Exposure 
Pattern Acquisition 

100%* 
0%* 

44.0%* 

97.2%* 
92.4%** 
55.3%* 

39.2%** 
4.4%* 
20.7%** 

87.8%* 
70.9%* 
43.3%* 

64.9%* 
36.9%* 
33.7%* 

Code Writing Transfer 55.3%** 85.3%** 74.7%** 27.7% 28.7% 
Actual Difculty 6.7%** 35.3%* 29.3%* 51.2% 53.5% 

6.3.3 A Special Case. Interestingly, we found one pattern, OOP1, 
where code writing questions were more efective at teaching the 
programming pattern (though not statistically signifcant). Further 
investigation found that for this pattern’s exposure exercises, Pat-
tern Exposure was nearly identical between the parsons condition 
and the writing condition (73.9% vs. 73.7%). However, participants 
were more likely (not statistically tested) to view the instructor 
solution in the writing condition (57.9% vs. 28.3%). 

This pattern involved creating classes with methods that re-
turned generators, and part of the pattern was ensuring that yield 
was at the end of the end of the defning function. This requirement 
was included as a possibly misguided way to improve readability. 
The instructor solutions made an explicit reference to this, “# yield 
is the last line of the loop.” This highlights a weakness of parsons 
for certain patterns. Though Active Pattern Exposure might be bet-
ter in most cases, in this case students were less likely to view the 
well-documented instructor solutions after solving it correctly in 
parsons, so they did not notice this subtle attribute of the pattern. 
However, this issue only arose in one of the 7 patterns used in this 
study. For all exercises, instructors trying to teach patterns could 
beneft from tools that aggregate student solutions to see if they 
are being solved in the expected way. 

6.4 General Efcacy 
We also analyze the efect of introducing Faded Parsons Problems 
beyond teaching programming patterns. We want to understand 
how practice with each exercise interface afects students’ ability 
to successfully complete subsequent writing exercises with sim-
ilar solutions (Code Writing Transfer). Open-ended code writing 
tasks are a well-established measure of mastery in many Computer 
Science courses. Results can be seen in Table 3. 

6.4.1 Code Writing Transfer. Both parsons and tracing exercises 
are a meaningfully diferent type of practice for students compared 
to writing. As writing is a well-established goal of programming 
expertise in introductory Computer Science courses, we evaluate 
students’ success on writing questions. 

In Study 1, the Code Writing Transfer rate is highest for parsons 
(85.3%), followed by writing (74.7%) and then tracing (55.3%). 
However, in Study 2, we fnd no signifcant diference between 
parsons (27.7%) and writing (28.7%). The poor Code Writing 
Transfer from tracing motivated its exclusion from Study 2. 

6.5 Student Perception of Faded Parsons 
Problems 

The Subjective Study was designed to gain insight into student 
perception of parsons. For this, we restrict our analysis to par-
ticipants that efort-completed all Study 1 exercises, as they had 
reasonable exposure to both writing and parsons. All quotes are 
from open-ended survey responses. 

6.5.1 Student Preference for parsons. The Subjective Study in-
cluded 7 exercises where students, after reading the problem state-
ment, could choose to solve an exercise as parsons or writing and 
then were asked to explain their choice. We compare to a distri-
bution of students choosing randomly between the two, and fnd 
students were much more likely to choose parsons (77.6%) over 
writing (22.4%). The primary reason for choosing parsons was 
their perceived difculty, further analyzed below. Separately, 22 
students chose parsonsin order to focus on the structure of the 
solution and “allowing them to think like the instructor” (P96), mak-
ing this the next most frequent explanation. However, 5 students 
chose writing for this same reason, preferring the “additional free-
dom” (P135) of “starting from scratch” (P114) to create “a more 
intuitive solution” (P85). 

6.5.2 Perceived Dificulty. In the Subjective Study, participants 
were asked to fll out a survey including a Likert-scale question 
about whether writing was easier to solve, parsons was easier 
to solve, or both are about the same. We fnd that 26 students 
(57%) thought parsons were easier, 12 students (26%) thought they 
were similarly difcult, and only 8 students (7%) thought writing 
were easier. Many students echoed this perception in open-ended 
questions, with 35 explaining their choice of parsons as choosing 
the easier exercise interface. However, 6 chose writing for this 
same reason, thinking they would get “more of a real practice” 
(P160) when forced “to start thinking on their own” (P137). 

6.5.3 Actual Dificulty. We also analyze the rate at which students 
efort-completed exercises from Study 1 and Study 2 without solving 
them correctly. Previous work suggests that other variations of 
Parsons Problems are easier than code writing exercises [12], but 
Faded Parsons Problems have not yet been assessed for relative 
difculty. In Study 1, we analyze exercises from the third week, 
where we instantiated all 9 (pattern, exercise interface) combinations, 
since the exercise interfaces equally represent each pattern. In Study 
2, we analyze the exercises from the exposure phase, comparing 
treatment to control. 
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We fnd that parsons and writing provide similar difculty 
to students. In Study 1 there is no signifcant diference between 
writing (29.3%) and parsons (35.3%). In Study 2, we again fnd no 
diference between writing (53.5%) and parsons (51.2%). These 
results confict with the student perception that parsons are easier 
than writing. 

6.6 Synthesis Of Results 
This work has found strong evidence that Faded Parsons Problems 
are an efective exercise for exposing students to patterns and hav-
ing them correctly transfer them to subsequent exercises. By con-
trast, open-ended code writing exercises – a widely used, popular 
approach to programming exercises – often do not expose students 
to the intended patterns even when a well-documented instructor 
solution is provided after the fact. Practice with Faded Parsons Prob-
lems also shows similar transfer to general programming success 
in subsequent code writing exercises over similar content. Though 
code tracing exercises are fairly efective at having students trans-
fer patterns as well, they are inefective at transferring to general 
programming success in subsequent code writing exercises. Code 
tracing exercises ofer clear evidence for how practicing with ex-
ercises can support students in practicing certain programming 
skills while insufciently practicing others. Faded Parsons Prob-
lems appear to ofer a good balance between code tracing and code 
writing exercises, teaching both patterns and general coding skills 
as well as either of those two interfaces. Furthermore, students 
had a preference to work with Faded Parsons Problems over code 
writing exercises, thinking of Faded Parsons Problems as easier 
problems despite their similar actual difculty. 

7 LIMITATIONS AND FUTURE WORK 
Notwithstanding the evidence in favor of integrating Faded Par-
sons Problems into CS1 courses, several questions remain open. 
We have not compared Faded Parsons Problems systematically to 
other Parsons Problem variants or to Code Skeleton questions, in 
which lines are already arranged but contain blanks, nor have we 
systematically studied the efects of what and how much code is 
blanked out in fading the scafolding. We also do not suggest that 
all code writing exercises should be replaced with Faded Parsons 
Problems; indeed, we found one pattern, OOP1, for which code 
writing exercises provided more efective practice. Finally, we stud-
ied a limited number of patterns chosen based on the instructor’s 
existing curriculum rather than on any systematic survey of the 
importance of diferent patterns. 

The need to be minimally disruptive to the existing curriculum 
imposed additional constraints that may afect validity of results. 
First, the study exercises were ofered as extra credit rather than 
required, so self-selection may have biased the study population to-
wards more highly motivated students. Second, Study 2’s problems 
required students to learn more material in addition to the patterns, 
and students had only 2 exercises in which to learn the patterns, 
compared to 5 in Study 1. Finally, to remain consistent with the in-
structor’s existing behavior of grouping similar problems together 
in assignments, both studies intentionally exposed students to the 
same patterns in consecutive exercises, which might boost students’ 

ability to recognize and apply patterns in the pattern acquisition 
phase of each study. 

On the other hand, the positive results do suggest exploring 
other uses of scafolding. For example, instead of giving students 
instructor solutions after homework assignments were due, what if 
students instead got points for “unlocking” them by solving Faded 
Parsons Problems or code tracing questions? In addition, students 
preferred Faded Parsons Problems over code-writing in part because 
Faded Parsons Problems were perceived as easier, even though 
our results suggest otherwise; we have not studied the potentially 
positive efect of this perception on student self-efcacy. 

8 CONCLUSION 
The studies we describe provide clear evidence that Faded Parsons 
Problems are particularly efective at teaching programming pat-
terns in CS1 courses compared to code-tracing and code-writing 
exercises, without detracting from the ability to transfer this knowl-
edge to code-writing exercises. Because Faded Parsons Problems 
can be created easily from existing code-writing exercises, they can 
be introduced into existing curricula with minimal disruption. Be-
cause they provide immediate feedback, they are particularly valu-
able for promoting mastery learning in online instruction, where 
immediate manual feedback may be impossible. Because students 
piece together and complete an instructor-designed solution, stu-
dents are more likely to be exposed to a high-quality solution than 
they would be in constructing their own solution from scratch, 
which could provide opportunities beyond patterns. These bene-
fts, combined with students’ stated preference for Faded Parsons 
Problems over code-writing exercises, provide strong evidence in 
favor of integrating such problems widely into introductory pro-
gramming courses. 

ACKNOWLEDGMENTS 
We thank Katie Stasaski and Andrew Head for engaging in many 
fruitful discussions, Michael Ball and the CS88 TAs for supporting 
of this study in their class, and Danny Chu for assisting in the imple-
mentation and analysis the study. This material is based upon work 
supported by the National Science Foundation Graduate Research 
Fellowship under Grant No. DGE 1752814. 

REFERENCES 
[1] Owen Astrachan, Garrett Mitchener, Geofrey Berry, and Landon Cox. 1998. 

Design patterns: an essential component of CS curricula. In Proceedings of the 
twenty-ninth SIGCSE technical symposium on Computer science education - SIGCSE 
'98. ACM Press, New York, NY, USA, 153–160. https://doi.org/10.1145/273133. 
273182 

[2] David Barr, John Harrison, and Leslie Conery. 2011. Computational Thinking: A 
Digital Age Skill for Everyone. Learning and leading with technology 38 (2011), 
20–23. 

[3] Benedict Du Boulay. 1986. Some Difculties of Learning to Program. Journal of 
Educational Computing Research 2, 1 (Feb. 1986), 57–73. https://doi.org/10.2190/ 
3lfx-9rrf-67t8-uvk9 

[4] Sallyann Bryant, Pablo Romero, and Benedict du Boulay. 2008. Pair program-
ming and the mysterious role of the navigator. International Journal of Human-
Computer Studies 66, 7 (July 2008), 519–529. https://doi.org/10.1016/j.ijhcs.2007. 
03.005 

[5] Bureau of Labor Statistics 2018-2019. U.S. Department of Labor, Occu-
pational Outlook Handbook, Software Developers. Bureau of Labor Statis-
tics. https://www.bls.gov/ooh/computer-and-information-technology/software-
developers.htm (retrieved on April 22, 2020). 

[6] William G. Chase and Herbert A. Simon. 1973. Perception in chess. Cognitive 
Psychology 4, 1 (Jan. 1973), 55–81. https://doi.org/10.1016/0010-0285(73)90004-2 

https://doi.org/10.1145/273133.273182
https://doi.org/10.1145/273133.273182
https://doi.org/10.2190/3lfx-9rrf-67t8-uvk9
https://doi.org/10.2190/3lfx-9rrf-67t8-uvk9
https://doi.org/10.1016/j.ijhcs.2007.03.005
https://doi.org/10.1016/j.ijhcs.2007.03.005
https://doi.org/10.1016/0010-0285(73)90004-2
https://www.bls.gov/ooh/computer-and-information-technology/software


CHI ’21, May 8–13, 2021, Yokohama, Japan 

[7] Nick Cheng and Brian Harrington. 2017. The Code Mangler: Evaluating Coding 
Ability Without Writing Any Code. In Proceedings of the 2017 ACM SIGCSE 
Technical Symposium on Computer Science Education - SIGCSE '17. ACM Press, 
New York, NY, USA, 123–128. https://doi.org/10.1145/3017680.3017704 

[8] Michael J. Clancy and Marcia C. Linn. 1999. Patterns and pedagogy. ACM SIGCSE 
Bulletin 31, 1 (March 1999), 37–42. https://doi.org/10.1145/384266.299673 

[9] Quintin Cutts, Sarah Esper, Marlena Fecho, Stephen R. Foster, and Beth Simon. 
2012. The Abstraction Transition Taxonomy: Developing Desired Learning 
Outcomes through the Lens of Situated Cognition. In Proceedings of the ninth 
annual international conference on International computing education research -
ICER '12. ACM Press, New York, NY, USA, 63–70. https://doi.org/10.1145/2361276. 
2361290 

[10] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008. Evaluating a New 
Exam Question: Parsons Problems. In Proceeding of the fourth international work-
shop on Computing education research - ICER '08. ACM Press, New York, NY, USA, 
113–124. https://doi.org/10.1145/1404520.1404532 

[11] Barbara J. Ericson, James D. Foley, and Jochen Rick. 2018. Evaluating the Efciency 
and Efectiveness of Adaptive Parsons Problems. In Proceedings of the 2018 ACM 
Conference on International Computing Education Research. ACM, New York, NY, 
USA, 60–68. https://doi.org/10.1145/3230977.3231000 

[12] Barbara J. Ericson, Lauren E. Margulieux, and Jochen Rick. 2017. Solving parsons 
problems versus fxing and writing code. In Proceedings of the 17th Koli Calling 
Conference on Computing Education Research - Koli Calling '17. ACM Press, New 
York, NY, USA, 20–29. https://doi.org/10.1145/3141880.3141895 

[13] Joseph L Fleiss and Jacob Cohen. 1973. The equivalence of weighted kappa and 
the intraclass correlation coefcient as measures of reliability. Educational and 
psychological measurement 33, 3 (1973), 613–619. 

[14] Milton Friedman. 1937. The use of ranks to avoid the assumption of normality 
implicit in the analysis of variance. Journal of the american statistical association 
32, 200 (1937), 675–701. 

[15] Philip J. Guo. 2013. Online python tutor: embeddable web-based program visu-
alization for cs education. In Proceeding of the 44th ACM technical symposium 
on Computer science education - SIGCSE '13. ACM Press, New York, NY, USA, 
579–584. https://doi.org/10.1145/2445196.2445368 

[16] Petri Ihantola and Ville Karavirta. 2010. Open source widget for parson’s puzzles. 
In Proceedings of the ffteenth annual conference on Innovation and technology in 
computer science education - ITiCSE '10. ACM Press, New York, NY, USA, 302. 
https://doi.org/10.1145/1822090.1822178 

[17] Tony Jenkins. 2002. On the difculty of learning to program. In Proceedings of the 
3rd Annual Conference of the LTSN Centre for Information and Computer Sciences, 
Vol. 4. Citeseer, Loughborough University, Loughborough, Leicestershire, UK, 
53–58. 

[18] Marcia C. Linn. 2005. The Knowledge Integration Perspective on Learning 
and Instruction. In The Cambridge Handbook of the Learning Sciences. Cam-
bridge University Press, New York, NY, USA, 243–264. https://doi.org/10.1017/ 
cbo9780511816833.016 

[19] Marcia C. Linn and Michael J. Clancy. 1992. The Case for Case Studies of 
Programming Problems. Commun. ACM 35, 3 (March 1992), 121–132. https: 
//doi.org/10.1145/131295.131301 

[20] Dastyni Loksa, Amy J. Ko, Will Jernigan, Alannah Oleson, Christopher J. Mendez, 
and Margaret M. Burnett. 2016. Programming, Problem Solving, and Self-
Awareness: Efects of Explicit Guidance. In Proceedings of the 2016 CHI Conference 
on Human Factors in Computing Systems. ACM, New York, NY, USA, 1449–1461. 
https://doi.org/10.1145/2858036.2858252 

[21] Sandra P. Marshall. 1995. Schemas in Problem Solving. Cambridge University 
Press, New York, NY, USA. https://doi.org/10.1017/cbo9780511527890 

[22] Tanya J. McGill and Simone E. Volet. 1997. A Conceptual Framework for Analyz-
ing Students’ Knowledge of Programming. Journal of Research on Computing in 

Weinman et al. 

Education 29, 3 (March 1997), 276–297. https://doi.org/10.1080/08886504.1997. 
10782199 

[23] Orni Meerbaum-Salant, Michal Armoni, and Mordechai (Moti) Ben-Ari. 2013. 
Learning computer science concepts with Scratch. Computer Science Education 
23, 3 (Sept. 2013), 239–264. https://doi.org/10.1080/08993408.2013.832022 

[24] Joel Michael. 2006. Where's the evidence that active learning works? Advances 
in Physiology Education 30, 4 (Dec. 2006), 159–167. https://doi.org/10.1152/advan. 
00053.2006 

[25] Orna Muller, David Ginat, and Bruria Haberman. 2007. Pattern-oriented instruc-
tion and its infuence on problem decomposition and solution construction. In 
Proceedings of the 12th annual SIGCSE conference on Innovation and technology in 
computer science education - ITiCSE '07. ACM Press, New York, NY, USA, 151–155. 
https://doi.org/10.1145/1268784.1268830 

[26] Dale Parsons and Patricia Haden. 2006. Parson’s Programming Puzzles: A Fun 
and Efective Learning Tool for First Programming Courses. In Proceedings of 
the 8th Australasian Conference on Computing Education - Volume 52 (Hobart, 
Australia) (ACE ’06). Australian Computer Society, Inc., AUS, 157–163. 

[27] David Perkins and Gavriel Salomon. 1992. Transfer Of Learning. International 
encyclopedia of education 2 (1992), 6452–6457. 

[28] Mona Rizvi, Thorna Humphries, Debra Major, Meghan Jones, and Heather Lauzun. 
2011. A CS0 course using Scratch. Journal of Computing Sciences in Colleges 26, 3 
(2011), 19–27. 

[29] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and 
Teaching Programming: A Review and Discussion. Computer Science Education 
13, 2 (June 2003), 137–172. https://doi.org/10.1076/csed.13.2.137.14200 

[30] Jorma Sajaniemi and Marja Kuittinen. 2005. An Experiment on Using Roles of 
Variables in Teaching Introductory Programming. Computer Science Education 
15, 1 (March 2005), 59–82. https://doi.org/10.1080/08993400500056563 

[31] C. Scafdi, M. Shaw, and B. Myers. 2005. Estimating the Numbers of End Users 
and End User Programmers. In 2005 IEEE Symposium on Visual Languages and 
Human-Centric Computing (VL/HCC'05). IEEE, Hoboken, NJ, USA, 207–214. https: 
//doi.org/10.1109/vlhcc.2005.34 

[32] Joshua Shi, Armaan Shah, Garrett Hedman, and Eleanor O'Rourke. 2019. Pyrus: 
Designing A Collaborative Programming Game to Promote Problem Solving 
Behaviors. In Proceedings of the 2019 CHI Conference on Human Factors in 
Computing Systems - CHI '19. ACM Press, New York, NY, USA, 1–12. https: 
//doi.org/10.1145/3290605.3300886 

[33] James C. Spohrer and Elliot Soloway. 1986. Novice mistakes: are the folk wisdoms 
correct? Commun. ACM 29, 7 (July 1986), 624–632. https://doi.org/10.1145/6138. 
6145 

[34] Nathaniel Weinman, Armando Fox, and Marti Hearst. 2020. Exploring Challeng-
ing Variations of Parsons Problems. In Proceedings of the 51st ACM Technical 
Symposium on Computer Science Education. ACM, New York, NY, USA, 1349. 
https://doi.org/10.1145/3328778.3372639 

[35] David Weintrop and Uri Wilensky. 2017. Comparing Block-Based and Text-Based 
Programming in High School Computer Science Classrooms. ACM Transactions 
on Computing Education 18, 1 (Dec. 2017), 1–25. https://doi.org/10.1145/3089799 

[36] Susan Wiedenbeck, Vikki Fix, and Jean Scholtz. 1993. Characteristics of the 
mental representations of novice and expert programmers: an empirical study. 
International Journal of Man-Machine Studies 39, 5 (Nov. 1993), 793–812. https: 
//doi.org/10.1006/imms.1993.1084 

[37] Benjamin Xie, Dastyni Loksa, Greg L. Nelson, Matthew J. Davidson, Dongsheng 
Dong, Harrison Kwik, Alex Hui Tan, Leanne Hwa, Min Li, and Amy J. Ko. 2019. 
A theory of instruction for introductory programming skills. Computer Science 
Education 29, 2-3 (Jan. 2019), 205–253. https://doi.org/10.1080/08993408.2019. 
1565235 

[38] Laura Zavala and Benito Mendoza. 2017. Precursor Skills to Writing Code. J. 
Comput. Sci. Coll. 32, 3 (Jan. 2017), 149–156. 

https://doi.org/10.1145/3017680.3017704
https://doi.org/10.1145/384266.299673
https://doi.org/10.1145/2361276.2361290
https://doi.org/10.1145/2361276.2361290
https://doi.org/10.1145/1404520.1404532
https://doi.org/10.1145/3230977.3231000
https://doi.org/10.1145/3141880.3141895
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/1822090.1822178
https://doi.org/10.1017/cbo9780511816833.016
https://doi.org/10.1017/cbo9780511816833.016
https://doi.org/10.1145/131295.131301
https://doi.org/10.1145/131295.131301
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1017/cbo9780511527890
https://doi.org/10.1080/08886504.1997.10782199
https://doi.org/10.1080/08886504.1997.10782199
https://doi.org/10.1080/08993408.2013.832022
https://doi.org/10.1152/advan.00053.2006
https://doi.org/10.1152/advan.00053.2006
https://doi.org/10.1145/1268784.1268830
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1080/08993400500056563
https://doi.org/10.1109/vlhcc.2005.34
https://doi.org/10.1109/vlhcc.2005.34
https://doi.org/10.1145/3290605.3300886
https://doi.org/10.1145/3290605.3300886
https://doi.org/10.1145/6138.6145
https://doi.org/10.1145/6138.6145
https://doi.org/10.1145/3328778.3372639
https://doi.org/10.1145/3089799
https://doi.org/10.1006/imms.1993.1084
https://doi.org/10.1006/imms.1993.1084
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1080/08993408.2019.1565235

	Abstract
	1 Introduction
	2 Related Work
	2.1 Programming Patterns
	2.2 User Interfaces for Program Exercises
	2.3 Parsons Problems

	3 Programming Patterns
	3.1 Examples of Programming Patterns
	3.2 Programming Patterns in Code

	4 User Interface For Programming Exercise Comparison
	5 Evaluation
	5.1 Study Environment and Participants
	5.2 Method for Constructing Faded Parsons Problems
	5.3 Study Description

	6 Results
	6.1 Statistical Measures
	6.2 Data Cleaning
	6.3 Pattern Acquisition
	6.4 General Efficacy
	6.5 Student Perception of Faded Parsons Problems
	6.6 Synthesis Of Results

	7 Limitations and Future Work
	8 Conclusion
	Acknowledgments
	References



