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ABSTRACT
Testing and test-writing are key skills for software engineers. Yet
most CS curricula spend insufficient time on testing [16], and some
studies have even found that graduating CS students enter devel-
oper jobs without these skills [5]. We argue that test writing is
a programming pattern that, at least when going beyond simple
input/output test cases, is new and unfamiliar to most students, so
that teaching test-writing requires not only teaching the strategic
concepts of thinking about testing, but also how to instantiate the
“arrange–act–assert” pattern of which all tests consist. Teaching
how to recognize and instantiate this pattern is complicated by hav-
ing to learn how to use testing frameworks and libraries—essentially
a syntactic obstacle. Faded Parsons Problems [25] (FPPs) have been
shown to be a novel and effective type of exercise for exposing
students to programming patterns by varying the amount of scaf-
folding provided. FPPs give similar learning gains to code-writing
exercises but are preferred by students, and can be designed to
“scaffold away” some syntactic obstacles that can impede students’
ability to become fluent in test-writing. To our knowledge, nei-
ther FPPs nor original Parsons Problems [20] have previously been
proposed to teach advanced programming patterns to advanced
students. We present our design of a system for creating variably-
scaffolded test-writing exercises in the form of FPPs, including
autograding tests using existing autograding solutions augmented
with techniques from mutation testing.
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1 OVERVIEW AND CONTRIBUTIONS
Software testing typically takes 50% or more of the resources de-
voted to a software development project [15]. Yet teaching testing is
under-emphasized in North American computer science classrooms,
and when we do teach it, we are prone to using toy examples rather
than realistic ones, simplified testing tools rather than standard
ones, or both [16]. As a result, even some graduating seniors from
CS lack basic testing proficiency [5], and it remains one of the most
commonly cited technical skill gaps reported by employers [14, 22].

We argue that test-writing is a programming pattern and should
be taught as such. Programming patterns (sometimes called plans,
schemata, templates) have several subtly different definitions in
the literature [3, 7, 17, 18, 24, 29, 31], but in general are higher-
level, partial implementations of reusable higher-level concepts
that achieve some goal. For example, an introductory-level pro-
gramming pattern is “premature return from a loop”: searching a
collection until some element satisfies a predicate, then breaking
out of the loop to immediately return that element, with a catch-all
return after the loop in case no match is found. According to cogni-
tive theory, when people view example problems with identifiable
similarities, they eventually construct, store, and are able to recall
and reuse a complex pattern when solving a problem that fits the
pattern [6, 17], rather than constructing the problem’s solution
from scratch. Learning to recognize and apply patterns is therefore
critical to becoming a proficient software engineer.

If test-writing can be cast as a programming pattern, then it
should be possible to teach it using pedagogical tools designed to
scaffold the learning of patterns. Specifically, we can scaffold away
some of the syntactic and mechanical obstacles that are known
to arise when trying to master a new pattern generally [31] and
testing-related skills specifically [21], allowing the student to first
master the conceptual aspects of the pattern, and then gradually
fade the scaffolding and move the student towards writing tests
from scratch with the correct syntax.

The contributions of this paper are therefore as follows:
• We propose that test-writing can be formulated as an ex-
ample of a programming pattern that is unfamiliar to early-
career students.

• We identify both conceptual and syntactic obstacles asso-
ciated with learning to instantiate this pattern when the
testing framework and/or the system under test are nontriv-
ially complex, as is the case with real-world applications.
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• We propose how these obstacles can be addressed by Faded
Parsons Problems (FPPs) [26], a new type ofmachine-gradable
exercise that helps teach patterns by having students recon-
struct expert solutions with varying amounts of scaffolding.

• We demonstrate a methodology and an instructor-facing
tool for authoring and delivering FPP-based test-writing ex-
ercises. Our approach enables automated grading of student
work using a technique based on mutation testing.

Parsons Problems have traditionally been used primarily to teach
introductory programming patterns to novice students; to our
knowledge, this is the first attempt to use them to teach a syn-
tactically complex programming pattern to advanced students.

We also note two non-contributions. First, we are just now in
the process of deploying these tools in our own courses. Evaluating
the efficacy of our approach and tools on student learning will
be the subject of a future paper. Second, good testing discipline
encompasses many topics besides test-writing, such as defining
and capturing test coverage metrics, identifying critical values for
test case parameters, and teaching the process of test-driven devel-
opment (TDD). While we are supportive of these goals, they are
orthogonal to (and so outside of) the work described in this paper,
though we plan to use our approach as the vehicle for teaching
those topics in our more advanced courses.

2 RELATEDWORK
One way the behavior of expert programmers differs from that of
novices is in experts’ ability to leverage patterns in understanding
and writing code [23, 29]. Attempts to incorporate the teaching
of patterns/templates into computer science classes [18, 31] led
to novices improving their problem decomposition and solution
construction skills (i.e. coding ability). Hence our motivation for
attempting to frame test-writing as a programming pattern.

Benefits and challenges of teaching testing. Edwards and
others [4, 10] have extensively studied and confirmed the benefits of
teaching software testing, including breaking student dependence
on debugging using only instructor-provided tests. But Proulx con-
firms [21] that syntactic and mechanical obstacles do indeed arise
when using industrial-grade testing tools in the classroom, and
offers a simplified testing tool and a library that uses Java reflection
to automate some of the work required to create fully fleshed out
test cases. In contrast, we use a real (not simplified) testing tool in
our exercises, relying instead on the scaffolding provided by Faded
Parsons Problems to temporarily “get the syntax obstacle out of
the way” by focusing on reconstructing an expert’s solution.

Parsons and FadedParsons Problems for teaching patterns.
Regular Parsons Problems [20] ask students to rearrange scrambled
lines of code to reconstruct a solution; in this sense, they focus more
on code reading than code writing. Faded Parsons Problems [25]
allow introducing blanks into some or all of the given lines of code,
gradually shifting the focus towards code writing. By fading the
scaffolding over time, we aim to provide students a continuous
“on-ramp” to learning to write complex tests from scratch. While
regular Parsons Problems provide similar learning gains to code-
writing exercises while taking less time [11, 12], those learning
gains do not necessarily transfer to code-writing tasks [25]. In

contrast, Faded Parsons Problems were specifically found to im-
prove code-writing skills as well as or better than code-writing
exercises [26]. We therefore use Faded Parsons Problems (hereafter
FPPs) for our approach.

Mutation testing to automate grading of studentwork. Soft-
ware testing is a rich field with no shortage of techniques for creat-
ing and analyzing test suites [2]. Our approach to grading student
tests is based on Ammann and Offutt’s mutation testing, in which
bugs are deliberately introduced into code to verify that some test
fails as a result. Others have used mutation testing to help teach
test-writing; Clegg et al. [8] “gamify” software testing by having an
attacker create mutants and a defender write test cases that detect
them, but in general the tests they illustrate are limited to pure
functions with no side effects or collaborators. We are interested in
scaffolding the writing of more advanced and realistic tests that rely
on nontrivial testing libraries to support the activities of arranging,
acting, and asserting.

Wrenn and Krishnamurthi [30] observe that when the same stu-
dent writes the code and the tests, the same misunderstandings
may permeate both. They use mutation testing to provide students
with instant feedback on their test cases, independent of their code
implementation progress. We go further and propose that as an “on-
ramp” to test-writing, students first reconstruct variably-scaffolded
expert-curated solutions (test cases) prior to constructing them
from scratch. Variable scaffolding also ensures that students cannot
“game” the process of reconstructing the solution based on cues
such as data dependencies [9]. The same authors propose scaffold-
ing the task of test-writing based on the six-step “design recipe” in
How To Design Programs [13], which specifies a series of steps with
concrete deliverables rangingfrom requirements-understanding to
implementation of each test case. We instead scaffold the syntactic
and mechanical aspects of test-writing by having students recon-
struct expert code in which these mechanical details have been
accounted for.

3 WHAT MAKES LEARNING TEST-WRITING
HARD?

Software testing is a critically important field with a rich litera-
ture [2]. Far from being of only academic importance, good testing
is so critical to complex commercial software that two of the world’s
largest and most successful software companies have published
books focusing exclusively on their testing methodologies, tools,
and approaches [19, 28]. Yet in our own curriculum, testing is cov-
ered only briefly in our introductory CS series. Students do not
encounter advanced testing techniques (test doubles, method stubs
and spies, mock objects, and so on) until the advanced courses.
We next describe the difficulties students have when they first en-
counter these advanced techniques, and how framing test-writing
as a pattern can help overcome them.

3.1 Test Writing as a Pattern
Thinking about test-writing differs in important ways from thinking
about code, because it often involves finding ways to circumscribe
and control specific behaviors of the system under test (SUT). For
example, when testing a method M1 that calls another method
M2, it is desirable to control the behavior of M2, both to test M1’s



1 specify 'centenary years are not leap years ' do
2 expect(leap_year? 1900).to be_false
3 end
4 specify 'but quadricentennials are leap years ' do
5 expect(leap_year? 2000).to be_true
6 end

1 specify 'search user by email succeeds if user exists ' do
2 user = create('user ', email: 'macallan@fakemail.com ')
3 search_result = User.search('macallan@fakemail.com ')
4 expect(result).to eq(user)
5 end

Figure 1: (a) Top: two one-line test cases with no Arrange
step, and with the Assert and Act steps combined in a single
line of code. (b) A test requiring an explicit Arrange step. The
syntax is RSpec (rspec.info), a widely-used Ruby test frame-
work, augmented by the FactoryBot library, which provides
an object factory for test suites.

behavior in different cases (what if M2 returns an error or raises an
exception?) and to isolate the testing of M1 from the testing of M2
(so that actual bugs in M2 do not also spuriously cause test failures
on M1). Learning to think in this way is the conceptual hurdle of
advanced test-writing.

Real-world testing frameworks provide quite a bit of machinery
to handle testing scenarios such as the above (in this example,
creating a test double or stub method for M2), and this machinery
has mechanics and syntax of its own that students must master,
of which we give examples in the next section. This is a syntactic
hurdle.

These two hurdles—conceptual and syntactic—are exactly the
ones that have been effectively addressed by teaching program-
ming patterns. The idea is to scaffold away the syntactic hurdles
initially, so that the student can concentrate on learning the con-
ceptual ones. For example, blocks-based programming languages
like Scratch and Blockly make most syntax errors impossible. Once
the student becomes comfortable with the concept, the scaffolding
can gradually be faded so that the student can begin mastering the
syntax necessary to instantiate the pattern.

We next describe the pattern that underlies substantially all test-
writing, give specific examples of these conceptual and technical
hurdles, and describe our proposal to use Faded Parsons Problems
to support the teaching of that pattern.

3.2 The Arrange-Act-Assert Pattern and Its
Conceptual and Syntactic Hurdles

The basic pattern followed by all automated software tests is Ar-
range, Act, Assert [15]. The Arrange step sets up any necessary
preconditions, such as state externally visible to the system under
test (SUT), use of test doubles or spies, and so on. The Act step
stimulates the system under test, which may be a leaf function,
a function that calls other functions, and so on. The Assert step
checks that the certain postconditions are met as a result—for ex-
ample, a certain value being returned, or certain events occurring
or not occurring as a result of exercising the SUT. The complexity
of each of the three steps—Arrange, Act, Assert—varies depending
on the test.

1 class UsersController < ApplicationController
2 def search_for_user
3 search_string = params['string ']
4 @user = User.search(search_string.downcase)
5 render(template: 'not_found ') and return if @user.nil?
6 end
7 end

1 specify 'search receives correct params and sets result ' do
2 fake_user = double('User ') # arrange
3 allow(User).to receive('search ').
4 with('macallan@fakemail.com ').
5 and_return(fake_user) # arrange
6 get('search_for_user ', :string => 'MacAllan@fakemail.com ')
7 expect(assigns('user ')).to eq(fake_user)
8 end

Figure 2: (a) A snippet of code from a Web app, (b) a test
for that code that uses a method stub andmock object (lines
2–5) to isolate the test from the dependency on User.search,
and uses RSpec library functions get (Act step) and assigns
(Assert step).

In the simple unit tests most students encounter in introductory
CS courses, the Arrange step does nothing, the Act step calls a
function with some specific argument values, and the Assert step
checks the return value. Figure 1(a) shows an example. But consider
an only slightly more complex test case that might appear in the
test suite for a Web application using Ruby on Rails 1. The test in
Figure 1(b) checks that the static method search correctly finds
and returns a user with a particular email if that user exists. The
conceptual hurdle of formulating this test case is realizing that
before we stimulate the SUT (Act step, line 3), we must first create
a fictitious user for it to find (Arrange step, line 2), and then verify
the created user was found (Assert step, line 4). The syntactic hurdle
is that the student must know that the FactoryBot testing library
provides the library call create, which invokes an object factory
to create valid instances on demand of a desired class for use by
test cases.2

The above syntactic hurdle may seem modest, but now consider
a slightly more complex example for the same fictitious app. Fig-
ure 2(a) shows a simple piece of Rails code that would be invoked
when someone submits a Web form to search for a user by their
email address. The corresponding test in Figure 2(b) checks that
when the user types a string into a Web form with the goal of
searching for a user name matching that string, the result of the
search is correctly made available to be displayed as part of an
HTML response page.

This test introduces a new conceptual hurdle. Since the behavior
of User.search is covered by tests such as that in Figure 1(b), the
goal of the test in Figure 2(b) is to verify that all the “glue” around
the call to User.search works correctly. In this case, good testing
practice calls for insulating the test from the implementation of
User.search by using a method stub. The corresponding syntactic
hurdle is in knowing how to set up the stub (lines 3–5) and create
a mock object for the stub to return (line 2).

1https://rubyonrails.org
2Not to be confused with a factory object or with the Abstract Factory software pattern,
an object factory in object-oriented programming is an object for creating other object
instances.



An additional syntactic hurdle results from the test exercising a
full-stack Web application, rather than simply calling a method. In
line 6, the call to get() is an RSpec extension that handles the non-
trivial work of simulating how a well-formed HTTP request result-
ing from the form submission would be parsed, including extracting
the “user-entered” parameter value string=macallan@gmail.com
from the URI, and creating the data structure that would normally
be passed to the Rails code of Figure 2(a). In line 7, the call to
assigns() inspects the list of variables that are about to be made
available to the view-template renderer. Neither of these functions
is conceptually central to the test itself, but it is necessary to get
their syntax correct in order for the test to run.

In summary, although both examples consist of short tests that
clearly follow the arrange–act–assert pattern, understanding how
to set up preconditions creates new conceptual hurdles for the stu-
dent, and knowing how to formulate the corresponding library calls
presents a syntactic hurdle. Note that even if the student knows
the programming language’s syntax, there are plenty of legal-but-
incorrect ways to call these specific “testing library” methods.

We next describe our tool that uses Faded Parsons Problems to
scaffold the learning of these conceptual and syntactic hurdles.

4 TEST WRITING AS A FADED PARSONS
PROBLEM

As an alternative to writing code from scratch, Faded Parsons Prob-
lems [25], recently introduced by Weinman et al., provide a set
of scrambled lines of code, some of which may include blanks.
Students fill in the blanks and reorder the lines to reconstruct an
intentionally-designed solution to a programming task.

Our goal is to enable instructors to create autograded test-writing
exercises as FPPs. Our approach preserves the FPP benefit of in-
troducing students gradually to a new programming pattern by
removing some cognitive load associated with syntax and mechan-
ics. Furthermore, using FPPs prevents “gaming” test-writing by
creating a test case that trivially passes (or fails) without exercising
the system-under-test. With PPs and FPPs, the student is restricted
to using the lines of code they are given.

4.1 Autograding Approach
Before describing the instructor and student view of using our
tool, we describe our approach to autograding, which determines
what materials the instructor must author. Code autograders for
student programs typically work by running instructor-provided
test cases on student-submitted code. But when the student code
itself consists of test cases, how should the autograder work?3

Mutation testing [2] introduces deliberate, syntactically-legal
defects in the code being tested; if no test case fails as a result, a gap
in test coverage is indicated. We use a variant of mutation testing
similar to that used in [30], some of whose terminology we follow
here. A suite of one or more tests (whether student-authored or
instructor-supplied) is valid if its assertions pass when run against
a correct implementation of the code. It is thorough if it detects all
defects in a buggy implementation. In our approach, the instructor
provides a correct implementation of the system under test (SUT),
a valid and thorough reference suite of tests for the SUT, and a set
3To abuse a cliché, quis probet ipsos probationes?

1 def leap_year(year)
2 if (year % 4 != 0) # mutant 1: year % 4 == 0
3 false
4 elsif (year % 100 == 0) # mutant 2: year % 100 != 0
5 (year % 400 == 0) # mutant 3: year % 400 != 0
6 else
7 true
8 end
9 end

1 solution: |
2 describe 'leap year ' do
3 specify 'occurs every 4 years ' do
4 ?expect ?( leap_year (2004)).to be_?truthy?
5 end
6 specify 'occurs on quadricentennial years ' do
7 expect(leap_year (?2000?)).to be_?truthy?
8 end
9 specify 'does not occur on other centennials ' do
10 expect(leap_year (?1900?)).to be_?truthy?
11 end
12 end
13 mutations:
14 var_logic_short_circuit: # variant 1
15 leap_year.rb:
16 2-3: |
17 if (year % 4 == 0)
18 var_centennials: # variant 2
19 leapYear.rb:
20 4-5: |
21 if (year % 100 != 0)
22 var_400_year_check: # variant 3
23 leapYear.rb:
24 5-6: |
25 (year % 400 != 0)

Figure 3: Instructor provided assets
Top (a): a simple Ruby function and possible mutations. Bottom (b):
The instructor provides a question prompt, a reference suite, and a
set of suggested mutations. Question marks in the reference suite

indicate where blanks would appear in the FPP.

of manually-constructed mutants, in each of which some deliberate
bug has been introduced that would cause one or more tests in the
reference suite to fail.

The student is shown the SUT and a set of scrambled code lines
(some possibly containing blanks) that they must reconstruct into
a test suite. We run the student’s suite and reference suite side-by-
side for the SUT and for each mutant. We say that a student-suite
test and the corresponding reference-suite test match with respect
to a mutant if they exhibit the same behavior (passing or failing)
when run against that mutant. The student’s score is computed as a
suitable aggregate across all mutants and all tests; the appropriate
rubric would depend on how the exercise is being used (summative
vs. formative assessment, for example), a discussion of which is
beyond the scope of this paper.

Intuitively, if somemutation is introduced specifically to expose a
particular test condition, then there should be a test in the reference
suite that checks that condition and fails when run against the
mutant. Therefore, a correct student test suite should include a test
that behaves in the same way.

4.2 Instructor’s View
Consider the simple instructor-authored SUT in Figure 3(a), a func-
tion that tests whether a particular year in the Gregorian calendar



is a leap year.4 Lines 2, 4, and 5 are annotated to show how to create
mutants that would detect a non-thorough student test suite. For
example, changing == to != in line 5 (reversing the sense of the
test) would create a mutant that fails when specifically checking a
quadricentennial year. A thorough student test suite would there-
fore need to include at least one test case that checks this behavior.
Note that other mutants are also possible, such as changing line
3 from false to true. In Section 6 we describe the possibility of
automatically generating mutants using existing technology.

Figure 3(b) shows additional instructor-provided materials in-
cluding a solution (reference suite) and mutations. The solution
may, but does not need to, selectively place question marks (?)
around certain tokens; if so, those tokens will appear as blanks
when the student is shown the scrambled code lines.

The description of mutations5 is used to create separate mutants
of the SUT, one per mutation. The student’s submission and ref-
erence suite will each be run against the SUT and against each
mutant; 100% correct means that the student and reference suites
behave identically on the SUT and on all mutants.

4.3 Student’s View
For those unfamiliar with Faded Parsons Problems, a short demo
video by its inventors, published alongside the original paper [26],
can be seen at youtu.be/dmcCxy34NE8 and shows the general stu-
dent experience of working on this problem type, using a standalone
system built to deliver FPPs.

We build our implementation using PrairieLearn [27], an open-
source and extensible assessment authoring system developed pri-
marily at the University of Illinois at Urbana-Champaign, recent
extensions to which allow constructing and autograding Faded Par-
sons Problems [1].While ourmethodology is language-independent,
and adding new languages is straightforward (PrairieLearn has ex-
cellent support for this by using Docker containers), our initial
implementation uses Ruby and the RSpec testing framework due
to curricular demands of specific courses.

The screenshot in Figure 4 shows the student’s view immedi-
ately after submitting a candidate solution to a subset of the above
example problem. The feedback shows that the student’s test case
passes against the SUT (as expected) and fails against a particular
mutant that inverts the sense of the test in line 2 of Figure 3 (also
as expected).

Creating a complete autogradable FPP in PrairieLearn requires a
set of about a dozen files arranged and formatted in a specific way;
our tooling ingests the instructor-authored SUT and the YAML file
indicating the question prompt, mutants, and other options, and
creates the necessary file structure for PrairieLearn. For example,
our tool creates each mutant by applying the specified mutations
to a copy of the SUT one at a time, labels each mutant uniquely
so that its output in the test results can be distinguished from that
of other mutants, arranges to concatenate the submitted student
tests and/or instructor tests with the SUT and mutants, and parses
the output of the code autograder to score the matching behavior
between the student’s and the instructor’s suite.

4A leap year occurs every four years, but does not occur in centennial years such as
1900, unless it is also a quadricentennial (every 400 years) such as 1600 or 2000.
5We are modifying this notation to use the patch(1) format.

Figure 4: Student’s view of solving an FPP
Top: initial screen includes a question prompt, a tray of scrambled
code lines with some containing blanks, and an empty tray into
which the student drags lines in the correct order and fills in the
blanks. Bottom: A submission attempt in which the student made a
syntax error filling in the blank. The student was shown the full

SUT code on a previous screen.

youtu.be/dmcCxy34NE8


We are making our PrairieLearn element code and related tooling
available under an open source license at github.com/ace-lab/pl-
ucb-faded-parsons.

5 DISCUSSION
A few observations based on the example are worth pointing out.
First, if the student were writing test code from scratch, they could
“game” the scoring of test cases by providing cases that make trivial
assertions such as expect(1).to eq(0). In our methodology, the
provided lines of code may contain blanks that can be filled in, but
the lines cannot be replaced. That is, since students are reconstruct-
ing an expert’s solution (the reference suite), they are constrained
to using the lines of code provided to them.

Similarly, if the expected behavior is for a test to fail, the student
only gets credit if the test fails because its assertion(s) failed, not
because of (e.g.) syntax or other runtime error in the test, such as
might be caused if the student filled in a Faded Parsons blank with
a value that would cause a runtime type error.

A valid and thorough student suite might not be identical to the
instructor’s reference suite. For example, expect(val).to be_truthy
is an alternative (and more idiomatic) way to assert “truthiness”
in Ruby. If the FPP were presented such that the tokens eq(true)
(in lines 11, 14, or 17 of Figure 3b) were surrounded by question
marks, these would appear as blanks that the student has to fill in.
It would be syntactically legal for the student to fill them in with
be_truthy, and would result in equally valid and thorough tests.

Finally, although this example is a simple pure-function case
in which a unit test simply checks whether a set of known inputs
produces given outputs, tests may also require using test doubles
(mocks and stubs) to isolate the unit test’s behavior from collab-
orator classes or methods, asserting the presence of absence of
exceptions, test spies to check whether a given external method
was called, and so on.

6 LIMITATIONS AND FUTUREWORK
In our initial version, tests cannot be weighted differently (so that
passing some tests is worth more points than passing others). As
we integrate this tool into our pedagogy, we will use the needs
of grading rubrics as a guide to providing more flexible scoring
options.

Our initial version allows specifing 𝑛 mutations and produces 𝑛
mutants from the SUT, each containing a single mutation. That is, it
is currently not possible to combine multiple mutants into a single
test run. We view this as an acceptable limitation since our goal
is not to use this methodology to raise students’ awareness of the
power of mutation testing, but simply to allow enough autograding
for student work products that are themselves test cases.

Perhaps the biggest current limitation is that the entire “suite” to
be provided by the student must take the form of a single FPP. For
example, the reference solution in Figure 3b has 11 lines of test code,
all of which would be present (but scrambled) in the Faded Parsons
problem for the student. Pedagogically, it might be preferable (for
example) to first have the student author a single test case, then
continue on to author the other two. Students may submit a suite
with fewer test cases than the reference suite by not dragging all
the code lines from the code line tray into the solution tray; in

this case, “missing” tests are always counted as not matching the
corresponding reference-suite test, but ideally, the student would
first be scaffolded through writing correct and complete test cases
for a subset of conditions, and then cumulatively add to that suite
through subsequent exercises. We are exploring how to achieve
this given some of the limitations of the PrairieLearn framework
on which our tool is based.

Finally, other researchers [8] have used automatic static-analysis
and test-generation tools to help automatically generate mutants
for use in teaching test-writing. We plan to apply this idea in our
approach, to minimize the amount of manual work instructors must
do at exercise-design time.

7 CONCLUSION
We have presented the challenge of overcoming syntactic and me-
chanical obstacles to test-writing as a problem of becoming com-
fortable with a new programming pattern, and therefore proposed
the use of a relatively new exercise type, Faded Parsons Problems,
which have been shown to be effective in helping students learn to
both recognize and use new programming patterns and in provid-
ing a smooth on-ramp to writing code that uses those new patterns
from scratch. We believe this is the first such approach to teaching
test-writing in this scaffolded manner, and the first application of
(a variant of) Parsons Problems to teaching advanced post-CS1
concepts. Our tooling uses mutation testing as the basis of auto-
grading the student’s test cases, and is available as an extension
to the PrairieLearn open-source assessment framework. We look
forward to using it to help drill more advanced test-writing skills
in our upper division programming courses.
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